
1

Technical
University

of Denmark

Cyber Security Certifications

What to expect from certifications in the EU Cybersecurity Act
and how to assess the security of ICT systems in the meantime?

Part 2

Christian Damsgaard Jensen
DTU Compute
Master of Cyber Security Whitepaper 2020-01 (Part 2)

Table of Contents

Introduction...3

Software Security..3

Software Security Assessment..3

All Source Code Available...4

Some Source Code Available...4

No Source Code Available...4

Company Security Assessment..7

Security Team Assessment...7

Security Track Record...7

Summary...8

References...9

Technical
University

of Denmark

DTU Compute Master in Cyber Security Whitepapers

3

Introduction

This is the second part of the whitepaper that
examines the certification of cybersecurity.
In the first part of this whitepaper, we exam-
ined different approaches to security certifica-
tions and discussed possible implementation of
security certification in the context of the new
EU Cybersecurity Act. In this Part 2, we exam-
ine what we can do in the absence of security
certified products, i.e. how to assess the securi-
ty of externally developed software systems. In
particular, we explore how to assess the security
of a software product or service based on exter-
nally available (open source intelligence) data.
Such assessment is possible without the active
participation of the prospective software or ser-
vice provider, but it is obviously better if they
collaborate in the process and provide the data
that are necessary for the evaluation.

Assessing the security of software compo-
nents is a highly specialized task, which re-
quires considerable resources. These are the
main reasons why few organizations per-
form a complete security assessment of all
the components that they come to rely on in
their system architecture. The high cost of
security assessment is also one of the main rea-
sons why few systems get security certified, as
mentioned in Part 1. We therefore need simple
methods to provide rough estimates of the se-
curity of system components.

In Part 1, we learned that security certifica-
tion typically focus on one of the following:
Products, Processes, or People, so it is natural
to consider all three aspects when assessing
the security of software products and services.
However, we cannot assume full knowledge
about the software or service providers’ pro-
cesses or employees (people) so we need to
base the security assessment of these on the
software developer’s track record. This assess-
ment may be based on information, such as news
reports, vulnerability disclosures, reputation
systems, recommendations from colleagues,
professional discussion fora and social media.

Software Security

Modern software systems and services are gen-
erally composed of separate components from
multiple suppliers using a common framework
or software platform, e.g. using Microsoft’s.
Net framework. This simplifies the individual
components and improves their maintainability,
but multiple components also contributes to the
complexity of the overall system. In particular, it
increases the number of internal and external
interfaces between components developed by
separate software development teams. An er-
ror in any component or disagreement between
development teams on either the interpretation
or implementation of the specification may lead
to a potential security vulnerability. The securi-
ty assessment of a software component must
therefore consider not only the component, but
also all the dependencies that each component
has.

We therefore divide our security assessment
into a Software Security Assessment, which ex-
amines both the observable software artefacts
and the security track record of the component,
and a Company Security Assessment, which pro-
vides an indirect assessment of the organiza-
tions commitment and ability to develop secure
software and systems. The company security
assessment considers any available information
about the security team as well as the security
track record of the organization; in both cases
based on open source intelligence data about
the provider of the software product or service.

 Software Security Assessment

The availability of source code plays a defining
role in all software assessments, so we distin-
guish between three different cases: all source
code available, some source code available, and
no source code available.

4

All Source Code Available

The source code for all (or most) components
and services are typically available for assess-
ment, which is typically the case for internally
developed systems and open source software.

Software related metrics for quality software
have been studied extensively in the literature,
especially in the context of maintainabil-
ity and dependability. The maintainabili-
ty attributes are particularly relevant, be-
cause they aim to measure the size and
complexity of the developed software and
complexity is often consider the mother of all
security vulnerabilities.

The simplest way to measure the complexity of a
software component is to measure its size. This is
most commonly done by counting the lines of code
in the software, because smaller programs are
often easier to comprehend, but several exten-
sions to this metric are possible. In effective
lines of code, lines consisting only of comments,
blank lines, and lines with standalone brackets
are ignored. The logical lines of codes counts
the number of statements in the programming
language, e.g. lines ending with a semicolon in
“Java” or “C”. The number of dependencies is an-
other simple metric, which indicates the number
of interfaces where divergent interpretations
of the specification may surface, i.e. compo-
nents with fewer dependencies would often be
considered more secure. Finally, the comment
to code ratio is another simple metric that mea-
sures the amount of actual code to the amount
of information included to assist software
developers. A higher comment to code ratio
provides more information for an internal
critical code review as well as increase the
maintainability of the software.

There are a number of more advanced met-
rics for code complexity, such as Cyclomatic
Complexity [1], the Halsted Complexity [2], and
the ABC metric [3], but these generally require
tool support, so we do not consider them here.

 Some Source Code Available

Source code is normally not available for commer-
cial software and services, but many systems are
built using open source software libraries and
frameworks distributed under less restrictive li-
censes. This means that source code will be avail-
able for parts of the system’s components and
dependencies. These components may then be
examined using some of the simple metrics
described above, but they may also be treated
as black boxes and simply counted as depen-
dencies.

Each component that appears as a dependency
embody the assumptions and domain knowl-
edge of the team that developed the compo-
nent. This means that unless the full semantics
of all dependencies are well understood, there
is a significant risk of misunderstandings, which
may lead to vulnerabilities. Dependencies usu-
ally serve a purpose and it is generally a good
idea to rely on components that are tried and
tested, but dependencies also add to complexi-
ty and software that has significantly more de-
pendencies than the competitors raise cause for
concern. For all dependencies, we assume that
source code is unavailable and analyse them
using the techniques described in the following.

 No Source Code Available

When no source code is available, it is still possi-
ble to learn something about the code complex-
ity, by examining the overall size of the binaries
and any external dependencies that the system
may have. Another simple measure is the set of
features that the system offers and remember
that from a security perspective “less is more”,
i.e. the number of necessary features divided by
the number of total features should be as close
to one as possible. Finally, it is possible to learn
from history, by examining the number and se-
verity of vulnerabilities previously discovered in
the system.

The security history of a software system or
service, a.k.a. security track record, includes all
known vulnerabilities in the system and estima-
tions of their severity.

5

Known vulnerabilities in third party systems
are found in the Common Vulnerabilities and
Exposures (CVE) database, which is maintained
by the MITRE Corporation since 1999 [4].
It defines a common identifier (the CVE num-
ber) and contains a short description of the
vulnerability. This provides security profession-
als an unambiguous way to discuss vulnerabil-
ities, but it also allows anybody to search for
all known vulnerabilities of a particular system.
It is important to note that exercising respon-
sible disclosure means that the system devel-
oper has patched most of these vulnerabilities.
In addition to the total number of vulnerabilities
found in a system, the CVE number includes the
year that the vulnerability was first discovered,
which may be extrapolated to provide a rough
estimate of the vulnerability discovery rate of
the system. The annual number of CVE numbers
that mention one of the four big browsers over
the past decade are shown in Figure 1.

The rate of CVE numbers, shown in Figure 1, in-
dicate that there may be significant variations in
the annual number of reported vulnerabilities for
individual years. However, each product has
a stable base rate of vulnerabilities per year,
e.g. Chrome has around 200 reported vulner-
abilities per year and Safari about half that
number. The security of Safari may not be bet-
ter than the other browsers, because the differ-
ence may be explained by Safari running on a
Unix-based system, which makes it inherently
more secure than software running on oth-
er systems. It should also be mentioned that
a new version of Internet Explorer (IE11) was

Figure 1 CVE report on popular browsers

Table 1 Mapping CVSS Scores to Severity

introduced in 2013, which partially explains the
dramatic increase in the number of reported
vulnerabilities after 2012.

The vulnerability spikes for Chrome in 2011 or
Firefox in 2017-2018, cannot be explained
by similar major version changes, but may still
reflect fundamental changes to the underlying
technology.

In addition to naming and describing known
vulnerabilities through the CVE, the Common
Vulnerability Scoring System (CVSS) [5] defines
a method to capture the principal characteris-
tics of a vulnerability and calculate a numer-
ical score reflecting its severity. The severity
measures how much control of the system an
attacker may obtain through the vulnerability
and how easy the vulnerability is to exploit in
practice. The severity calculation includes no
information about the value of the assets that
the system protects, so it cannot replace a thor-
ough risk evaluation.

Moreover, CVSS scores may change when
more information becomes available, e.g. if the
vulnerability becomes easier to exploit or is
shown to have higher impact. The CVSS scor-
ing system is maintained by a special interest
group (SIG) of the Forum of Incident Response
and Security Teams (FIRST) and CVSS scores
for most vulnerabilities listed in the CVE data-
base can be found on the National Vulnerability
Database [6].

The CVSS scores vulnerabilities from 0 to
10, where 10 is the most critical. Numeri-
cal scores are, however, difficult to commu-
nicate to a large audience, so FIRST has de-
cided to define severity levels that map the
CVSS scores to text. This mapping is shown in
Table 1.

CVSS Score Severity Level
0.0 None
0.1 – 3.9 Low
4.0 – 6.9 Medium
7.0 – 8.9 High
9.0 – 10 Critical

6

It is, however, important to understand the
limitations of the CVE and CVSS scores. A high
number of CVEs for a product does suggest that
the product is insecure, but it may equally well
indicate that the product is more popular and
has been ported to more platforms, as is the
case when we compare the number of CVEs for
Safari and Chrome reported in Figure 1.

Similarly, the absence of CVEs for a spe-
cific product does not guarantee a secure
product, because vulnerabilities may be
found in one of the product’s dependencies.
For example, the CVE database does not
contain an entry for the Ukrainian M.E.Doc
accounting package, which was initially
exploited in the Not-Petya ransomware
attack that hit Maersk in 2017, but it includes
both of the underlying vulnerabilities (CVE-
2017-0144 and CVE-2017-0145).

Another important factor to consider is the way
we currently release software to customers
before it has been completely tested, which is
one of the things that the certification scheme

A brief summary of common standards for vulnerability assessment are outlined here.

CVE (Common Vulnerabilities and Exposures) [4]
The CVE provides a database of vulnerabilities, where each new vulnerability is assigned a unique iden-
tifier, known as the CVE number or CVE Identifier. This facilitates information sharing and discussion of
particular vulnerabilities. The CVE database contains brief descriptions of most publicly known vulnera-
bilities and exposures.

CVSS (Common Vulnerability Scoring System) [5]
The CVSS provides a common metric to rate the severity of known vulnerabilities, based on how easy it
is to exploit (exploitability), what systems are affected by the vulnerability (scope) and the possible con-
sequences of a successful attack (impact). It facilitates prioritisation of remedial efforts when a system
is affected by several CVEs.

CWE (Common Weakness Enumeration) [9]
The CWE provides a classification (a structured list) of clearly defined software and hardware weakness-
es, which is useful to describe the issues found in code reviews. Where the CVE describes the actual vul-
nerabilities in software and services, the CWE describes the underlying problems causing vulnerabilities.

CAPEC (Common Attack Pattern Enumeration and Classification) [10]
The CAPEC provides a classification (a structured list) of common ways to attack systems and services.
Where the other vulnerability assessment standards focus on the software artefacts of the systems and
services, the CAPEC focus on the system in operation, e.g. it provides identifiers and definitions of the
different types of phishing operations.

The CVE and CVSS provide a comprehensive list of known vulnerabilities and their impact on the security
of systems and services, where the CWE and CAPEC identifies the theoretical and methodological errors
that may arise in working systems

in the EU Cybersecurity Act aims to rectify.
This means first versions of software contain
more errors and more vulnerabilities, which
are then removed as the software matures.
The dramatic increase in vulnerabilities in
Internet Explorer after Microsoft introduced
IE11 in 2013, as shown on Figure 1, illustrates
this point. This suggests that it may be more
important to consider the trend in the number
of CVEs, rather than the total.

One way to combine the CVE and CVSS scores
for individual software systems is implement-
ed in CodeTrust [7], which calculates a security
score as the product of aggregated vulnerabili-
ty scores and severity scores.

The aggregated vulnerability score considers
both the total number of CVEs and the current
trend (whether the CVE rate is increasing, stable
or reducing). Similarly, the aggregated severity
score considers the distribution of vulnerabili-
ties across the different severity levels.

Common Vulnerability Assessment Standards

7

Company Security Assessment

Some software requires frequent patches and
security updates, which reflects the compe-
tence, development methods and priorities of
the development team, i.e. some development
teams seem to favour feature rich software
delivered at a high rate, while others favour
more judicious methods focusing on formal
specification, evaluation and testing. It is hard
to know the development methodology of a
software product that has not been subjected
to the certification process. We therefore need
to rely on inference based on externally observ-
able indicators, such as the number of CVEs and
the CVSS scores mentioned above.

Security Team Assessment

The quality of software developed by a devel-
opment team depends on the project manage-
ment methodologies, processes and tools em-
ployed by the team, but also on the security
consciousness and experience of the individual
team members. Most of the development team,
however, is unknown to the public outside of
the open source software community, where
modifications can often be traced back to indi-
vidual developer. This leads some organisations
to demonstrate their commitment to security
by purchasing security companies with a high
profile (and a healthy product portfolio) as Brit-
ish Telecom did when they purchased Bruce
Schneier’s company Counterpane in 2006. An-
other way to demonstrate commitment to secu-
rity is to hire well known and respected security
professionals to leading security positions, as
Yahoo did when they appointed Alex Stamos as
CISO in 2014, which he quit in 2015 because of
a disagreement over a programme that would
scan the emails of all Yahoo subscribers. Securi-
ty profiles like Alex Stamos, however, are often
conscious about the value of maintaining their
reputation, so when Stamos joined Facebook
as CISO in 2015, some people suggested that
he would function as a human canary and that
Facebook users should pay attention if he ever
decided to leave [8].

It is difficult to quantify the security value of the
individual team members, but when high profile
security professionals decide to join or leave an
organisation, it must raise concern. Moreover,
if a company has a churn rate in their software
development teams that is significantly above
the industry average, it may suggest a problem-
atic work culture and it definitely indicates a
challenge to maintain the development team’s
corporate memory.

Security Track Record

The security track record of a company aggre-
gates the security track records of all the prod-
ucts and services that the company offers, i.e.
it may be established through a combination
of the common vulnerability assessment tech-
niques mentioned above. The results of a search
in the CVE database for the name of some
well-known software companies are shown in
Figure 2.

One must be extremely careful when using CVE
information to estimate an organisation’s se-
curity posture, because larger companies with
a broader and more exposed product portfolio
will usually have more reported CVEs against
them. Moreover, CVEs may relate to a few spe-
cific products, e.g. more than 90% of the CVEs
reported for Adobe in 2015 relate to only
two products Adobe Flash and Adobe Reader/
Acrobat. This is probably more an indication
of the inherent difficulty in writing secure
Internet facing interpreters, than any lack of
commitment to security by Adobe.

Figure 2 Total number of CVEs for
well-known companies

8

We first observe that the total number of re-
ported CVEs per year for these companies
have almost doubled over the past decade
(a little less for Google and a lot more for SAP).
This may simply indicate that more security ex-
perts are examining the different systems, but
it may equally well indicate a general increase in
system complexity with the embrace of Cloud
Computing and service outsourcing.

Summary

In this Part 2 of the whitepaper on cybersecurity
certifications, we examined ways to assess the
security of software that has not yet been certi-
fied. This assessment must therefore be based
on simple metrics based on public available in-
formation. We identify the following five sim-
ple steps for security assessment of third party
software and services.

Step 1. Determine the complexity of the sys-
tem under consideration, e.g. using some of the
complexity metrics presented here.

Step 2. Establish the security track record of the
system provider by aggregating open source in-
telligence data, such as CVEs and CVSS scores
for the software; remember to consider both
the current status and trends.

Step 3. Establish the security track record of
the system provider through aggregating the
open source intelligence data about all the pro-
vider’s products and services.

Step 4. Evaluate the provider’s security team.
Experienced security professionals know their
value and gravitate towards companies with a
healthy security culture.

Step 5. Consult your network. There is limited
openness about security incidents in the indus-
try, so there is no basis for a Trustpilot of cyber-
security, but there is often a willingness among
security professionals to discuss problems
and experiences with third party software or
services with colleagues and friends from other
companies.

Finally, it is important to remember that the
metrics and assessment methods presented in
this whitepaper only provides rough estimates.
The results should not be interpreted on an
absolute scale, but are generally better suited
to compare similar products from competing
companies.

We also observe that Google has relatively few
reported CVEs in view of the company’s size
and presence on the Internet, which we attri-
bute to a healthy security culture at Google.
This indicates that considering the total number
of CVEs reported for a company, and its trend,
provides useful information about the compa-
ny’s security posture, albeit one that must be
used carefully.

9

References

T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering , Vols.
SE-2, no. 4, pp. 308-320, 1976.

M. H. Halstead, Elements of Software Science (Operating and Programming Systems
Series), {New York, NY, USA: Elsevier Science Inc., 1977.

J. Fitzpatrick, “Applying the ABC Metric to C, C++, and Java,” in More C++ Gems, New York,
NY, USA, Cambridge University Press, 2000, pp. 245--264.

MITRE Corporation, “Common Vulnerabilities and Exposures,” Mitre Corporation, [Online].
Available: https://cve.mitre.org/index.html.

Forum of Incident Response and Security Teams, “Common Vulnerability Scoring Sys-
tem SIG,” [Online]. Available: https://www.first.org/cvss/.

Information Technology Laboratory (ITL), “National Vulnerability Database,” National In-
stitute of Standards and Technology, [Online]. Available: https://nvd.nist.gov/.

C. D. Jensen and M. B. Nielsen, “CodeTrust: Trusting Software Systems,” in Proceedings
of the 12th IFIP WG 11.11 International Conference on Trust Management, Toronto,
Canada, 2018.

J. Menn, Cult of the Dead Cow: How the Original Hacking Supergroup Might Just Save the
World, New York, NY, USA: Public Affairs, 2019.

Mitre Corporation, “Common Weakness Enumeration,” Mitre Corporation, [Online]. Avail-
able: https://cwe.mitre.org/.

Mitre Corporation, “Common Attack Pattern Enumeration and Classification,” Mitre Cor-
poration, [Online]. Available: https://capec.mitre.org/.

1

2

3

4

5

6

7

8

9

10

10

Technical
University

of Denmark

DTU Compute Master in Cyber Security Whitepapers

This Master in Cyber Security whitepaper is part of a series of whitepapers intended
for alumni of the Master in Cyber Security Programme at DTU and security profes-
sionals working in Danish companies, with special interests in the topics covered
in the whitepaper, or security professionals who may simply wish to broaden their
horizon. There is no fixed schedule for these whitepapers, but we expect to publish
4 – 6 whitepapers annually.

Topics of these whitepapers may cover all aspects of cyber security, from user aware-
ness and insider threats to advanced technologies and emerging security paradigms,
but the main focus of this series will be on the practical application of theoretical
and technological advances in cyber security.

The Master in Cyber Security whitepaper series is published by:

Department of Applied Mathematics and Computer Science
Technical University of Denmark
Building 324
Richard Petersens Plads
DK-2800 Kgs. Lyngby
Denmark

