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About Me …

• Numerical analysis & inverse problems – regularization algorithms, matrix computations, 
image deblurring, signal processing, Matlab software, …

• Head of the Villum Investigator project
Computational Uncertainty Quantification for Inverse Problems.

• Author of several Matlab software packages.

• Author of four books (one more underway).

Computed
Tomography

Scientific
Computing

& Just
Enough Theory
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In an inverse problem we estimate a quantity that is not directly 
observable, using indirect measurements and the forward model.

Some examples on the next pages.

What is an Inverse Problem?

In a forward problem, we use a mathematical model to compute 
the output from a “system” given the input.
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Example: Tomography
Image reconstruction from projections.

Medical imaging

Materials science

100 µm
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Example: Rotational Image Deblurring

Application: “star camera” 
used in satellite navigation.
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Inverse Problem and Mathematics

Inverse problems

Why mathematics is important

• A solid foundation for formulation of inverse problems.

• A framework for developing computational algorithms.

• A “language” for defining and expressing the properties of the 
solutions: existence, uniqueness, stability, reliability, …
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Some Formulations



Meet DTU, Dec. 20198/31 P. C. Hansen – Inverse Problems

A Few Simple Examples
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Eigenvalue Analysis for Symmetric Kernel
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A Tricky Example …
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… With No Solution
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Inverse Problems Are Ill Posed

Hadamard’s definition of a well-posed problem (early 20th century)

1. Existence: the problem must have a solution.

2. Uniquness: the solution must be unique.

3. Stability: it must depend continuously on data and parameters.

If the problem violates any of these requirements, it is ill posed.

Inverse problems are, by nature, always ill posed.

And yet, we have a strong desire – and a need – to solve them …
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Hadamard 1 (existence) and 2 (uniqueness)

Case 1

Case 2
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Hadamard 3 (stability)
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Eigenvalue Analysis for Symmetric Kernel
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Eigenvalue Analysis for Symmetric Kernel

Test problem – gravity from Regularization Tools (Hansen, 2007):

With no noise in the data,
the Picard condition is satisfied.

When noise is present, the 
Picard condition is not satisfied.
The solution coefficients diverge.
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Dealing with the Instability  Regularization
The ill conditioning of the problem makes it impossible to compute a 
“naive” solution to the inverse problem:

 Incorporate prior information about the solution via regularization:



Meet DTU, Dec. 201918/31 P. C. Hansen – Inverse Problems

Eigenvalue Analysis of Tikhonov Regularizer

These modified
coefficients satisfy 
the Picard condition.

Stabilization 
accomplished!
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Case: Total Variation (TV)
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Case: Directional TV (DTV)
Kongskov, Dong, Knudsen, Directional total generalized variation regularization, 2019.

Blurred and noisy Directional TV
TV and similar methods
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Case: Regularization with Sparsity Prior
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Case: Sparse CT Reconstruction

Artificial sparse test images.
Left to right: 5%, 10%, 20%,
40%, 60%, 80% nonzeroes.

Phase diagram: the recovery fraction of 
reconstructed images at a given sparsity ab-
ruptly changes from 0 to 1, once a critical 
number of measurements is reached. 
Agrees with the theoretical phase transition 
for random matrices (Donoho, Tanner 2009). 

Jørgensen, Sidky, H, Pan, Empirical 
Average-Case Relation Between Under-
sampling and Sparsity in X-Ray CT, 2015.
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Case: Training Images as Regularizer

Training images
are patches from
high-res image.

Dictionary patches
learned via nonneg.
matrix factorization.

Reconstruction
computed from highly 
underdet. problem.

Dictionary Sparsity prior on dictionary elements

Soltani, Kilmer, H, A tensor-based dictionary learning approach to tomographic image 
reconstruction, 2016.
Soltani, Andersen, H, Tomographic image reconstruction using training images, 2017.
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Case: When the Training Images are Wrong
Soltani, Andersen, H, Tomographic image reconstruction using training images, 2017.

Exact image The ‘‘best’’ reconstruction 
based on a wrong dictionary 

created from the peppers 
training image.

Peppermatches?
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Algorithm Development – Iterative Methods
Large-scale problems A x = b.
How to solve them efficiently?
→ Iterative methods!
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Convergence Explained
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Nonconvergence!

Nonconvergence due to eigenvalues 
of BA with negative real part 
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The Fix

Dong, H, Hochstenbach, Riis; SISC, 2019.

I am really proud of this paper.
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Nonconvergende  Convergence
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Beyond Sharp Reconstructions 

Classical 
method.

Figure credit
to E. Sidky

TV regularization 
needs only 10%
of full X-ray dose.

But how reliable
are the spots? 

algorithm-error

x = argmin { ||K f – g || + regularization(x) }

data-errormodel-error regularization-error

All kinds of errors have influence on the solution:

UQ = uncertainty quantification
is the end-to-end study of the
impact of all forms of error and
uncertainty in the data and models.
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Applied UQ

UQ gives insight about the 
reliability of the result.

63% 8%12% 17%

Traditionally: one result.
How trustworthy is it?

Black hole?
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Research Initiative

Computational Uncertainty Quantification
for Inverse Problems

Vision
Computational UQ becomes an essential part of solving

inverse problems in science and engineering.

• Develop the mathematical, statistical and computational framework.

• Create a modeling framework and a computational platform for non-experts.
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UQ: Gaussian Data Errors and Gaussian Prior
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UQ in Image Deblurring

A solution (MAP estimator).Measured blurred image.

UQ shows uncertainty in each pixel; white denotes high uncertainty.
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Case: UQ with Non-Negative Prior

If the prior or likelihood is non-Gaussian, we must sample the posterior: 
we generate many random instances of the regularized solution with the 
specified likelihood and prior.

We have an analytical 
expression for the prior, 
but no analytical expres-

sion for the posterior.

Bardsley, Hansen, MCMC Algorithms for Non-negativity Constrained Inverse Problems, 2019.

Mean of samples MAP estimate

Hist. of reg. parameters Standard deviation

Positron Emission Tomography.
Solutions sampled by a new
Poisson Hierarchical Gibbs Sampler.
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Case: UQ for Model Discrepancies

Measured 
data

Physical 
model

Model 
discrep-

ancy

Data 
errors= + +

Cannot include 
all possible  

aspects

Accounts for
known unknowns & 
unknown unknowns

Known 
statistics

Described by a Gaussian process

”Naive” point source model Point source & model discrep.Actual field

Dong, Riis, Hansen, Modeling of sound fields, joint with DTU Elektro, 2019.
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HD-Tomo: High-Definition Tomography

The following examples are from the project 
HD-Tomo, which was funded by an ERC 
Advanced Research Grant, 2012–17. 
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Example: Fault Inspection
Use X-ray scanning to compute cross-
sectional images of oil pipes on the seabed.
Detect defects, cracks, etc. in the pipe.

Defect!

Reinforcing bars
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