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Summary 

Feed efficiency (FE) is the most important phenotype in commercial pig production. It 

is of high economic value, but also important for sustainable production. The goal in 

this thesis, was to further our biological understanding of FE in pigs, using 

metabolomic, transcriptomic and genomic data. Beyond biological understanding, we 

aimed to develop potential biomarkers that could be applied in pig production for FE 

in all omics data types.  

Metabolomics is one of the key links in the connections between genetics, environment 

and phenotypes. Metabolomics analysis can predict underlying phenotypes with non-

invasive techniques. We performed metabolomics analysis of blood plasma on 109 

performance tested young boars, of the DanBred Duroc (Duroc) and DanBred Landrace 

(Landrace) breeds, with 59 and 50 boars of each breed, respectively.  This was the first 

study applying metabolomics analyses of FE phenotypes in pigs. As an addition, we 

also analyzed daily gain (DG) at different growth stages. The results showed significant 

overall relation between both FE phenotypes and the DG phenotypes, based on mixed 

and linear modelling. This identified 67 metabolites significantly associated with DG 

phenotypes and 1 with FE at a false discovery rate (FDR) < 0.05. Based on metabolites 

network analysis, we identified several modules, which were correlated both with DG 

and FE phenotypes, respectively. Pathway enrichment analysis and gene-metabolite 

networks identified several putative key hub metabolites.  

If we view the metabolites as the most external link to our phenotypes, the next link in 

the chain are the proteins. An effective way of doing genome wide analysis of protein 

activity is by doing analysis of the expression of the genes associated with the proteins 

through transcriptomics. In pig production, and for FE, muscle is a key organ. Thus, we 

performed muscle transcriptomics on a sub-population of 41 pigs from the 

metabolomics study, mainly focusing in feed conversion ratio (FCR). Similarly to the 

metabolomics results, we were able to demonstrate an overall relation between gene 

expression and FCR. We identified 14 differentially expressed (DE) genes (FDR < 0.1). 

Pathway analysis revealed enrichment of mitochondrial genes in the top FCR genes.  

Gene-gene interaction analysis identified top interactive genes among potential FCR 

genes. Network analysis revealed two modules correlated to FCR, which contained 
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enrichment of mitochondrial and nucleic acid metabolism genes, respectively. Finally, 

a novel possible link between the effect of exercise on human muscle, and the muscle 

of efficient pigs was established.  

The deepest layer underlying all the causal mechanism in organisms, is genetics. We 

thus aimed to establish a link between genes whose expression might affect FCR, and 

the genetic control mechanisms behind them. This was done through expressed 

quantitative trait loci (eQTL) analysis. We identified 15 potential individual eQTLs 

(FDR < 0.1), and in agreement with previous studies, we observed that the overall 

distribution of p-values in our analysis were significantly left-skewed towards lower 

values. We applied targeted pathway enrichment to trans-eQTLs, demonstrating 

significant enrichment of genomic context-based gene ontologies. 

Overall, based on the work in this thesis we identified many potential FE biomarkers, 

and found strategies for analyzing the complex and statistically challenging phenotype 

of FE. This has given us new insights in the biological background of FE, and acts as a 

stepping-stone for future work in the subject. 
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Dansk Resumé 

Foderudnyttelse (FDU) er den vigtigste egenskab i kommerciel svineproduktion. FDU 

har høj økonomisk værdig, men er også vigtig for bæredygtig produktion. Målet i denne 

afhandling var at fremme vores biologiske forståelse for FDU i grise, ved brug af 

metabolomiske, transkriptomiske og genomiske data. Udover biologisk forståelse, 

havde vi også som mål at udvikle potentielle biomarkører for FDU til brug i 

svindeproduktion baseret på alle omics data typer. 

Metabolomics er en af nøgle forbindelserne mellem genetik, miljø og fænotyper. 

Metabolomics analyser kan forudse underliggende fænotyper med ikke-invasive 

teknikker. Vi udførte metabolomiske analyser af blod plasma fra 109 ydelses teste orner 

fra racerne Danbred Duroc og Danbred Landrace, med henholdvis 59 og 50 fra hver 

race. Dette var det første studie som anvendte metaboliske analyser af FDU fænotyper 

i grise. Vi udførte også analyser af daglig tilvækst (DT) ved forskellige vækstfaser. 

Resultaterne viste signifikant samlede relation mellem både FDU fænotyper og DT 

fænotyper baseret på mixed og lineær modellering. Dette identificerede 67 metaboliter 

som var signifikante for DT og en for FDU, med en false discovery rate (FDR) < 0.05. 

Baseret på netværk analyse, identificerede vi adskillige moduler som var korreleret med 

FDU og DT fænotyper. Pathway og gen-metabolit analyse identificerede adskillige 

mulige nøgle metaboliter.   

Hvis vi ser metaboliter som det mest eksterne link til vores fænotype, så er det næste 

link i kæden proteiner. In effectiv måde at udføre helgenom undersøgelse af protein 

aktivitet er gennem transkriptomics. I griseproduktion, og for FDU, der er muskel et 

vigtigt organ. Derfor, udførte vi muskel transkriptomiske analyser a en sub-population 

på 41 grise fra det metabolomiske studie, med hoved focus få feed conversion rate 

(FCR). I en gengivelse af de metabolomiske resultater, kunne vi vise en samplede 

relation mellem gen ekspression og FCR. Vi identificerede 14 gener som var 

differentielt udtrykte (FDR < 0.1). Pathway analyse viste berigelse af mitokondriske 

gener i top FCR gener.  Gen-gen interaktion analyse identificerede top interaktive gener 

i blandt potentielle FCR gener. Netværks analyser fandt to moduler med correlation to 

FCR, som henholdsvis indeholdte berigelse af mitokondriske og nukleinsyre 
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metabolisme gener. Endelig, så fandt vi en mulig ny forbindelse mellem effekten af 

træning på humane muskler, of muskler fra effektive grise.  

Det dybeste underliggende biologiske lag i organismer er genetik. Derfor havde vi som 

mål at forbinde gener med en mulig forbindelse til FCR og underliggende genetisk 

kontrol. Dette blev gjort gennem expressed quantitative trait loci (eQTL) analyse. Vi 

identificerede 15 individuelle eQTLS (FDR < 0.1), og ligesom i de tidlgere studier, der 

så vi at vi havde signifikant berigelse af lave p-værdier i vores modeller. Vi anvendte 

målrettet pathway analyse på trans-eQTLer, som viste signifikant berigelse af gen 

ontologier baseret på genomisk kontekst.   

Sammenalgt, identificerede vi mange mulige FDU biomarkører på baggrund af arbejdet 

i denne these, og fandt strategier for at analysere det komplekse og statisk udfordrerne 

fænotype, FDU.  Dette har givet os ny biologisk viden om FDU, og kan agere som et 

startskud for flere analyser.    
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Aims 

Improvement of FE is one of the most important goals in pig production. There has 

been consistent increase in price of pig feed, making feed costs by far the largest cost 

of raising pigs (around 60%). Furthermore, it is a necessity to increase the 

environmental sustainability of pig production. As Denmark is one of the largest 

producers and exporters of pigs in the world, producing around 30 million pigs a year, 

there is strong motivation to improve efficiency. This Project investigates if pigs that 

are efficient and inefficient for feed utilization also differ in their whole genome-wide 

genetic make-up, global gene expression levels and metabolites levels. Ultimately, we 

want to identify non-invasive biomarkers which could be used in genomic selection 

programs and develop deeper understanding of the systems of biological mechanisms 

of FE.  

To reach these goals, we collected both blood and tissue samples from performance 

tested pigs and extracted metabolomic, transcriptomic and genomic profiles, and 

analysed these, on the basis of collected feed intake and growth data.  

The aims of this thesis were: 

1. Plan and perform collection of blood and muscle samples, and generate 

transcriptomic, metabolomics and genomic data. 
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2. Identify significant individual metabolites related to FE phenotypes, based both 

on individual metabolite analysis and network-based strategies. Identify 

pathways underlying significant metabolites. 

3. Identify differentially expressed genes for FE phenotypes and create gene 

expression networks related to FE phenotypes. Find underlying functional 

mechanisms based on gene ontology and enrichment.  

4. Identify the connection between expression and genetics for genes that are 

significantly involved in FE traits. 

5. In all analysis, identify potential biomarkers for FE. 

6. Based on experiences learned during data analysis, develop novel 

methodologies and analysis strategies. 
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Background 

The Genome 

All known life relies on DNA and RNA to function. DNA, or deoxyribonucleic acid, is 

the memory of life, coding all the necessary information for generating all the diverse 

life form we see on earth. DNA is made of two chains coiled into a helix structure, 

which is made of individual building blocks. These individual building blocks are 

called nucleotides, and DNA is solely made of four specific nucleotides: adenine (A), 

cytosine (C), guanine (G), and thymine (T). The two strands are connected by covalent 

bonds that form between nucleotides, according to base pairing rules:  A with T and C 

with G. Thus, the two strands are completely complementary. In eukaryotes, the DNA 

is located in the nucleus of the cell, and organized into chromosomes, which are large 

individual DNA molecules. As an example, the pig genome is divided into 19 

chromosomes, comprising a total of roughly 2.6 billion base pairs (bp) [1].    

If DNA is the storage of the cell, then RNA, or ribonucleic acid, is the messenger. RNA 

differs from DNA in two key ways: it has ribose sugar backbone instead of deoxyribose, 

and instead of using T, it uses uracil as a nucleotide. The change in the molecular 

structure makes RNA more chemically active and unstable. RNA is generally a single 

stranded molecule, although it can still generate complementary base pairs with itself 

or other RNA molecules. RNA is synthesized with DNA as a template by RNA 

polymerases, which are specialized proteins that are conserved in all life forms.  

Transcription and Translation 

For the genetic information of genes to be activated, it first needs to be transcribed into 

RNA, by the aforementioned RNA polymerases. This is a complex process involving 

many factors, including the un-wounding and opening of DNA, the recruitment of RNA 

polymerases by transcription factors to the promoter area of genes, transcription 

elongation and transcription termination [2]. As the information on each DNA strand 

is complementary to the other, the actual transcription happens on the antisense strand 

of a gene, thus generating a copy of the sense strand in RNA. A particular feature of 

eukaryotes, including pigs, is the exon-intron structure of genes. Thus, genes are largely 

split into two types of regions – exons, which are the protein-coding regions of genes, 

and introns, which are not [3]. While the whole gene is transcribed, introns will be 
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spliced and removed co-transcriptionally, ensuring that mature messenger RNA 

(mRNA) will only contain the exons [4].  mRNA is the class of RNAs that is destined 

to be translated into protein. While not all RNA is spliced, even long non-coding RNA 

(lncRNA) can be spliced [5], even though it will not be translated into protein. This 

pattern, of exons and introns allows for alternative versions of a gene to be generated, 

ensuring protein diversity [6].  

Once DNA has been transcribed into mRNA, the mRNA is translated into protein, 

which is the actual functional unit in organisms.  RNA can however, be functional, such 

as in the case of the lncRNAs [7]. Translation into protein is mediated by the ribosome 

together with transfer RNAs (tRNAs). Essentially, mRNAs bind to the ribosome, and 

then tRNAs select and transfer the correct amino acids based on the RNA sequence, 

which are linked together into a peptide chain of amino acids, which will eventually 

form the complete protein [8].  A schematic of the process is found in Figure 1. 

 

 

Figure	1.	Schematic	of	RNA	translation	and	protein	synthesis.	Figure	by	Boumphreyfr	licensed	under	CC	BY-SA	

3.0	https://creativecommons.org/licenses/by-sa/3.0/ 
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Genetic Variation 

When observing a given species, it is obvious to a casual observer that most individuals 

of a given species are quite similar – most humans have two hands, two eyes, etc. It is 

also obvious, that similar does not mean identical – we see variation in the color of the 

hair or eyes, difference in size and proportion and more. Some of these differences will 

come down to environment, or epigenetics (a topic we will not discuss further in this 

thesis), but many of the differences are of genomic origin. While most of the genome 

within a species is identical, there is variation between all individuals, due to mutations 

that have happened over time in different individuals and populations. A large meta-

analysis of 50 years of twin-studies including 17804 phenotypes reported an average 

heritability of 0.49 over all phenotypes studied [9]. Heritability is the proportion of the 

variation in a given phenotype explained by genetics effects. The initial definition is 

largely attributed to Jay L. Lush, who actually developed the idea in an animal breeding 

context [10]. More rigorously, a given phenotype P is expressed as follows: 

! = # + % 

Where G is the genetic component, and E the environmental effect. The heritability&', 

is then the variance in G over the variance in P: 

&' =
Var(G)

Var(P)
 

This is the broad sense heritability. When using heritability in a selection context, it is 

often more important to take into account the contribution of additive genetic effects to 

the variance, denoted as Var(A). The additive variance represents the contribution of 

parents in the differences of their offspring [11]. Using this, one can calculate the 

narrow sense heritability ℎ': 

ℎ' =
Var(A)

Var(P)
 

 

How is genetic variance expressed in practice, on a molecular level? When defining 

genetic variation, one must typically define it as the difference to a reference, as a 

sequence of DNA cannot be different from itself. These differences are called genetic 

variants, which are separated into three overall categories: Single Nucleotide 

Polymorphisms (SNPs), insertion and deletions (indels) and structural variants. SNPs 
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are point mutation, that is, single positions in the genome where different members of 

a species differ in the nucleotide found at that position [12]. Indels are short deletions 

or insertions of nucleotides at a given position ranging from 1 to 10,000 bp [13]. 

Structural variants are essentially indels, but larger and sometimes harboring specific 

properties, such as repeated elements [14]. Based on human studies, SNPs are by far 

the most common variants [15], which undoubtable extends to pigs. A cursory search 

of “pig snp” of Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/) revealed 1256 hits, 

while “pig indel” only has 56 matches. Given that mammalian genomes are diploid, a 

given genomic position has two versions, or two alleles. Thus, one can have different 

variants of a SNP on each allele, which then defines one overall genotype. 

Given the role and function of DNA, one can easily realize how genetic variants lead 

to different phenotypes. Changes in nucleotides can lead to changes in the final protein 

product, complete inactivation of genes, or affect the level of expression of a given 

gene, all of which can affect measurable phenotypes.  

Linkage Disequilibrium 

When determining the causal impact of a given genetic variant, one cannot simply 

expect that a correlation between a phenotype and the variant signifies and underlying 

functional impact. One of the main reasons for this, is that genetic variants will 

invariably be linked with their surrounding genomic context, meaning that the true 

underlying effect may be caused by unseen genetic effects. The reason for these effects 

is that DNA is passed from parents to offspring in chromosomal units, with some degree 

of recombination between maternal and paternal chromosomes. Effectively, most 

regions in the genome will not be recombined, and thus there will be stretches of DNA, 

which are highly correlated among parent and offspring, leading to high correlations in 

neighboring variants, which is called linkage disequilibrium (LD) [16]. Over time, in a 

given population, more chromosomal segments will be recombined, resulting in shorter 

stretches of correlated genome. One useful measure of LD is r2, which represents the 

squared correlation between two alleles [17]:  

2'(34, 36, 346) =
(346 − 3436)

'

34(1 − 34)36(1 − 36)
 

Where 34 is the probability of allele a, 36 is the probability of allele b, and 346 is the 

joint probability of allele a and b.  



 15 

The Danish pig production 

Denmark is one of the world’s leading producers of pork and has the highest per-capita 

pig production of any nation. Consequently, most of this production is exported. In 

2017 alone, 31.8 million pigs were produced, and a total of 1.908.017 tons of pork 

products were exported (Landbrug of Fødevare, Statistik 2017 grisekød). Therefore, it 

has been of key importance to make more effective the production as much as possible, 

without hampering quality. One key method of improvement is selective breeding of 

economically important phenotypes. The Danish production pig is a crossbred, with the 

boars being purebred Duroc and the sows being 

 

 

Figure	2	Overview	over	relative	economic	gain	of	improvement	of	the	various	trait	in	the	Danish	pig	breeding	
program.	Overall,	FE	represents	the	highest	importance,	and	together	with	daily	gain	30kg-	slaughter	represent	
over	half	of	value	of	the	improvement.	Source:	SEGES	svineproduktion	2018.	

a cross of Landrace and DanBred Yorkshire (Yorkshire). Given this mixture, the 

purebred pigs have slightly different breeding goals. The Duroc does not include female 

fertility phenotypes, such as LG5 (live piglets at day 5) and mother effects, but has a 

higher focus on FE. In Figure 2, we can see the relative economic gain achieved by the 

different phenotypes in the breeding program of Danish pigs in the purebred lines. 

Overall, we see that FE is the single phenotype which contributes the most 

economically through improvement. Combined with daily gain from 30kg-slaughter, 

they cover over half of the increased value from improvement. In practice, it is 

impractical and expensive to measure FE in the general production population. 

Therefore, in Denmark, testing for FE is done at the core testing facility at Bøgilgård. 
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Here, approximately 5000 potential breeding boars for all three pure breeds are tested 

yearly. The pigs arrive from 28 breeders around the country at around 4 weeks of age, 

and testing begins after an acclimatization phase of about 5 weeks. The testing phase 

happens from a weight of ~30kg to ~100kg, where feed consumption and weight gain 

is accurately measured.   

Breeding values 

The procedures, methods and techniques for calculating and estimating breeding values 

of pigs for the various phenotypes in the breeding goal are outside the scope of this 

thesis. However, a short explanation of the process serves as a background for how the 

pigs have been selected over time, and thus their genomic background. Since 2010 in 

Duroc, and 2011 in Yorkshire and Landrace, genomic selection has been used in the 

breeding program to estimate breeding values. Estimated breeding values (EBVs) are 

estimates of an animal’s value for a given phenotype in the breeding program. Breeding 

values are used in the selection process to select the best animals for breeding. In 

practice, they are estimated based on known phenotypes, and the phenotypes of related 

animals, which is extended with genomic information in genomic selection. This means 

EBVs are a sum of both a polygenic and a genomic random effect. The genetic random 

effect is correlated with a SNP based genomic relationship matrix, and the polygenic 

random effect is correlated with a relationship matrix. The parameters in the model are 

estimated using mixed models, based on average information REML, and the EBVs are 

best linear unbiased predictions [18]. Overall, using genomics offers more accurate 

breeding values, even without the need of phenotyping an animal or close relatives [19]. 

Beyond the increased accuracy, the improved possibility of prediction without 

phenotypes allows for shorter turnover time in breeding in general, as accurate 

predictions can be made as soon as genetic data is available regardless of the availability 

of phenotypes and extended to animals with no testing.  

Feed efficiency 

Feed Efficiency is the most important phenotype in commercial pig breeding, as feed 

represents the single highest cost in pig production [20, 21]. Beyond commercial 

interests, as the need and demand for more environmentally friendly food production is 

increasing, higher efficiency leads to more sustainable production. There are two main 

metrics used for feed efficiency in pigs. The first one is feed conversion ratio (FCR). 
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FCR is simply the ratio between growth and feed intake. The second method is Residual 

Feed Intake (RFI) which was first suggested by Koch et al in 1963 [22]. RFI is based 

on the difference between the expected feed intake and the actual feed intake for a given 

animal. This can be calculating by linearly regressing  feed intake as a response to 

growth, and including any relevant covariates for a given animal, such as fat 

percentage[23]. The general theory behind RFI is that it represents overall metabolic 

efficiency, independent from growth rate or animal size [21, 24, 25]. In contrast, it is 

reported in the literature that selection for FCR will result in co-selection for daily gain 

and overall growth [21, 24, 25]. This is also supported by a relatively old simulation 

study, showing that when basing selection of a ratio term, one would actually be 

selecting for the components of the ratio [26]. It should be noted that these co-selection 

effects are not negative in pig production, as demonstrated in figure 1, where we saw 

that increase in daily growth was the phenotype with the second highest positive 

economic impact. FCR is based on a simple calculation, where RFI relies on individual 

production and population factors [27, 28]. RFI and FCR have a reported correlation 

above 0.7, and both RFI and FCR have a low to medium heritability [28]. FCR has been 

by far the most common measure used in pig production [21]. Inconsistent feed 

measurements due to feeder loss, varying weight range of animals or differences in feed 

affect the accuracy of FCR calculations[29]. These issues are not present in our studies 

given the well-designed nature of the breeding setup in Danish pig production, as feeder 

loss has largely been removed, feed is standardized and the period of FCR testing is 

weight based, not time based.   

The feed efficiency in pigs is affected by many factors, such as choice of feed, 

environment, and inherent biological factors[29]. Of these, our interest lies solely in the 

biological part. It has been estimated that around one third of the variance in FCR 

between pigs is independent from growth rate and animal composition[30]. This 

variation can generally be split into protein turnover rate, metabolic rate, activity, 

thermoregulation and immune function [31-34]. While this accounts for the soruce of 

variation, the actual molecular background is still somewhat elusive[35].  

Metabolomics 

Metabolites are small molecules that take part in metabolic processes, and can often be 

seen as the link between the internal organism and the environment[36]. The 
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metabolome can then be defined as the ensemble of metabolites that partake in 

maintenance growth and general function of living organisms[37].  Metabolomics is 

then the study of a comprehensive set of metabolites from a given source, such as blood 

or urine.  

Mass Spectrometry Liquid Chromatography 

Mass spectrometry Liquid Chromatography (LC-MS) is an untargeted technique for the 

identification metabolites (and other molecules or atoms). The LC part refers to the 

solution of the sample into a fluid mobile phase which is passed through a stationary 

phase. Different molecules will then move at different speeds through the stationary 

phase, ensuring different retention times, which in turn will create separation of 

metabolites[38]. The MS part is an analytical technique that can measure the mass of 

the metabolites. A MS device includes an ion source, a mass analyzer and a detector. 

The ion-source is necessary for the ionization of molecules ensuring the generation 

charged molecules, as charge neutral molecules cannot be detected.  The mass analyzer 

separates metabolites according to their m/z ratio, and the detector is then able to detect 

the relative abundance by measuring the strength of current or charge at a given m/z 

ratio, leading to a spectrum[39, 40]. In Figure 3 we can see a schematic of LC-MS. 

Here it is important to emphasize that the abundances are relative, meaning that the 

intensities can only be compared of peaks with the same m/z and retention time. This 

means that we cannot say anything about the absolute abundances of different 

metabolites in relation to each other 

  

Figure	3	Schematic	visualization	of	LC-MS.		Figure	by	Daniel	Norena-Caro	CC	by	1.0	

https://creativecommons.org/licenses/by/1.0/.	
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The Metabolome 

The main advantages of the metabolome in relation to the genome or transcriptome is 

that no reference is needed in principle. We can simply analyze the spectrum of any 

animal or source without needing to have a species-specific reference. The big 

challenge in metabolomics is the actual identification of metabolites in the metabolome. 

In LC-MS analysis of metabolites, typically only under <2% of potential metabolites 

can actually be identified [41]. Furthermore, less than 10% of known human 

metabolites have properly validated spectra [42] While genomic and transcriptomic 

sequencing technologies generally require a priori knowledge for best use, we can 

easily and relatively cheaply accurately identify the specific sequence of RNA and 

DNA molecules. In contrast, there is no current solution to this problem in metabolite 

analysis, and it is estimated that it would cost billions of dollars and decades of research 

to develop technology that can directly identify specific molecules [43]. Therefore, in 

silico techniques are the main method of identification and annotation of metabolites 

currently, and there are various accurate open source tools available for this [44, 45]. 

Using in silico approaches and manual curation, the human metabolome database 4.0 

contains over a 100.000 known, expected and predicted metabolites [46]. This database 

is a valuable resource for animal science, as many basic metabolic processes are shared 

between higher organisms. This means, that if we have a set of m/z values from an 

animal metabolomics experiments, we can annotate our metabolites using the human 

metabolome database. 

In animal science, and thus pig research, metabolomics can be a valuable tool for non-

invasive phenotypic prediction. In animal breeding and selection, one often wants to 

quantify various phenotypes as early and efficiently as possible. FE is generally 

expensive and time consuming to monitor, and other phenotypes, such as carcass 

phenotypes, require animal slaughter, thus invalidating potential breeding. Non-

invasive metabolomics have been shown to have the power to detect small differences 

in phenotypes [47-49], making them potentially useful for subtle phenotypes such as 

FE. There have been a number of papers linking the metabolome to important 

commercial phenotypes, such as RFI [50, 51], fertility[52], milk quality.  
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Decoding the transcriptome 

The transcriptome represents a snapshot of all the RNA transcripts and their quantity 

in a cell. This is seen as a proxy for the activity of the genes associated with the RNA 

transcripts, thus allowing one to understand which genes, and ultimately, proteins, are 

active in a tissue or cell type. Furthermore, RNAs themselves can have catalytic 

activity, as seen in lncRNA [7]. To quantify the transcriptome, one can use RNA 

sequencing (RNA-Seq) [53]. RNA-Seq is the process of quantifying the RNA 

molecules including a reading of specific nucleotides, which is generally called 

sequencing. The applications and studies using RNA-seq are more numerous than one 

can easily summarize, and a search for RNA-seq at Pubmed gives 25134 hits. This 

could range from cancer studies [54] to temperature stress response in freshwater fish 

[55]. Here we present the workflow and methods applied to the analyses of RNA 

sequencing data, and thus, the transcriptome. The generation of transcriptomic data 

always starts with a source, which could be anything from a simple cell to a complex 

tissue. After RNA has been extracted from the sample, the first step is to sequence our 

RNA. After this sequencing, we must do quality control (QC), mapping and 

quantification to get to a stage were the data is usable. Once we have properly processed 

our data, we can perform differential expression analysis to find genes that are 

associated with our phenotypes of interest, or other more complex analysis methods.  

From Sanger to Next Generation Sequencing 

The first generally used untargeted sequencing method was Sanger sequencing, but this 

was expensive, low-throughput and not quantitative [53, 56, 57].  There were also 

hybridization techniques, relying on the hybridization of specific targets with pre-

prepared cDNA or oligo probes, using fluorescence to quantify RNA molecules[53]. 

These approaches could not analyze untargeted or unknown sequences, and suffered 

from high background level and lack of dynamic range [53, 58, 59]. However, as the 

technology matured, probe arrays were able to target thousands of sequences [60]. This 

means that probe array are still useful today for SNP based genotyping, as the dynamic 

range issues does not matter for SNPs. Furthermore, in genetics, given the LD structure, 

it is not a necessity to do full genome sequencing in all cases. As probe arrays are cheap, 

they can also be used as a low cost alternative for analysis of RNA, or in cases where 

exact abundance are less important.  
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While the options above presented some methods for analyzing RNA and DNA 

sequences, they still posed severe limitations to what was possible. As an example, the 

initial sequencing of the human genome took 13 years and almost 3 billion dollars to 

complete [61]. At these costs and time frames, the amount of genomes one could 

sequence and analyze is severely limited, and we would likely not have a pig genome 

today, much less other genomes with even less economic impact, such as the 

sequencing of rare local pig breeds.  

NGS was the second generation of sequencing methods after Sanger sequencing, and 

started to appear in the mid-2000s[62]. There are several platforms for NGS, but they 

all have some important factors in common: they are cell free systems not relying on 

bacterial cloning, they perform thousands to millions of sequencing reactions in parallel 

and the base detection is performed in cycles in parallel [62]. One such example is the 

Illumina platform, a widely used platform for NGS. Illumina sequencing can be 

separated into the following general steps: 

1. DNA/RNA extraction - First, the genomic DNA (gDNA) or RNA of choice 

must be extracted and isolated 

2. Library preparation - DNA and RNA are first fragmented into random small 

sequences. RNA must then be transformed into cDNA using reverse 

transcriptase. After this, adapters must be ligated to each end of the c/gDNA.  

3. Cluster Amplification - The library of fragments are then loaded into a flow 

cell and hybridized to the surface. Each fragment is then amplified through 

bridge amplification, generating cluster of identical fragments 

4. Sequencing – Fluorescently labeled nucleotides are then added in the flow 

cell, and incorporated sequentially at each position in each fragment. After 

each round of incorporation, the wavelength and intensities of all sequence 

clusters are imaged, allowing for the identification of the nucleotides. 

A typical Next generation sequencing experiments produce millions of reads, and a 

lengths of the read length available for a given platform range from 25 kb all the way 

to 15kb[63, 64]. The reads must be aligned for further analysis, a topic we will cover 

in the section on the transcriptome.  
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Data QC 

In sequencing experiments there will always be a certain amount of base calling 

uncertainties and unwanted events, such as sequencing of artificial adapter sequences. 

While modern computational mapping techniques are quite robust to errors, it is still 

best practice to properly QC data. RNA-seq experiments can still fail completely in 

some cases, and this can most often already be seen in QC steps. Raw sequencing data 

will include the sequence with associated quality outputs, which inform us of the 

likelihood of correct base calling. Based on the quality, analysis of artificial sequence 

content, duplicated and overrepresented sequences and other similar metrics one can 

validate the quality of RNA-seq data using a tool such as FastQC [65]. After initial QC, 

one would use a trimming tool to remove artificial sequences and low quality bases, for 

example Trimmomatic [66]. The QC should then be repeated to verify that the trimming 

step has worked as desired.  

Read Mapping 

One we have done QC on our data we are ready for mapping. Mapping is the process 

of finding where in the genome each of our reads comes from.  In the context of the pig 

genome, the assumption when mapping is that we have a reference genome available. 

A reference genome in raw text form is comprised of all the nucleotides, coded as A, 

T, C and G, sorted in the right order and separated into the chromosomes of that specific 

reference. As it is a reference, it will be based on a specific source. For example, the 

original pig genome was based on a female Duroc pig [1]. As high throughput 

sequencing experiments produce millions of reads, and genomes are billions of base 

pairs long, when matching a read to the genome, a simple exhaustive search would be 

too slow for practical purposes, as we would need to do as many comparisons as the 

length of the genome minus the length of the read for each individual read. Instead, we 

first index the genome, making searches much more efficient [67, 68]. An example of 

an indexing technique is a suffix array, which transforms the genome into a sorted list 

of all the possible suffixes in the genome up to some maximum suffix length, allowing 

for fast lookup of a sequence [67, 69]. When mapping RNA-seq, one must also take the 

splice sites into account. As mature mRNA is spliced, many reads will map to two 

separate exons. If a mapper is not able to handle gaps in the alignment in relation to the 

reference, it cannot properly map spliced reads. Beyond specific algorithmic techniques 

for dealing with gaps, mappers also take advantage of the fact that splice sites have a 
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canonical structure, with specific donor and acceptor sequences [67, 70]. Furthermore, 

mappers can also include known splice sites from annotation in mapping [70]. More on 

annotation below.  

Read quantification and annotation 

Once we have mapped our reads, we in principle have all the information we need for 

analysis. We know that status of our reads – mapped, unmapped or multi-mapped – and 

we have the exact coordinates for each read. Doing analysis on millions of reads based 

on the coordinates of each read without further processing would be a daunting task, so 

instead, we must quantify our mapping in a more summarized form. In this step, we 

will assume two things: that we have mapped to reference genome and we have 

available annotation. Genome annotation include all the known genomic elements of a 

genome and their coordinates. For mammalian genomes, this will typically be genes at 

the top level, which then can contain further subdivisions, such as introns or exons or 

individual transcripts. A common format used for annotation is the Ensembl gene 

annotation system[71]. The gene annotation of the pig was released by Ensembl in 2012 

and is currently in version 11.2 as of date of writing. There are two general approaches 

to quantification – transcript-based quantification, and gene-based quantification. 

Transcript based assembly methods, such as Cufflinks[72], can use annotation to 

generate abundance estimates of individual transcript variants. These methods are very 

computationally intensive and show low concordance, and thus technologies for 

accurate transcript abundance estimation are not mature yet [64]. The other 

quantification strategy is to count the number of reads within each annotated genomic 

feature one wants to quantify. When working with genes, one can simply count the 

number of reads that are mapping within the coordinate boundaries of the gene. The 

final output is then a discrete count for each of the genes in our annotation for each 

sample, which then can be merged into a count matrix for further analysis. More 

sophisticated quantification methods are possible within this framework, but they 

follow the same basic principle.  Common methods used to quantify reads include 

HTseq [73] and bedtools [74].  

Differential expression analysis 

Differential Expression Analysis (DEA) is the procedure of analyzing the expression 

of individual genes, and identifying significant changes in expression due to differences 
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in condition, disease or phenotype. Before starting any kind of analysis comparing 

separate sequencing libraries, one must always start by normalizing the data. This is 

due to technical variation between libraries, as there will often be differences in library 

size and /or other technical biases, which we are not interested in modelling.  Early 

normalization techniques performed linear transformation of read counts based on 

library size or GC content, but these methods do properly model more complex effects 

between sequencing libraries [75] [64]. More complex normalization methods can be 

split into two categories, normalization using control or using modelling [76]. 

Normalization by control relies on adding known sequences in known concentrations 

in each library before sequencing. These sequences can be designed in sophisticated 

ways to cover a range of lengths, abundances and GC contents [77]. Normalization by 

modeling is the more common approach, and is used by the most popular DEA tools, 

such as Limma, EdgeR and DEseq2 [78-80]. These approaches generally assume that 

most genes between libraries are not differentially expressed, and that the overall 

expression levels are similar. For example, in DEseq2 normalization, the ratio of read 

counts and the geometric mean is calculated for all genes in each library. The final 

correction is the mean of all these ratios in each library, giving one normalization factor 

per library. If there are large changes in the libraries, then the modelling based 

approaches may fail to create comparable libraries. When working with data from farm 

animals, often one does not expect large changes, so the extra expense of control-based 

methods may not be worth it.  

Once we have appropriately normalized our libraries, we can estimate the actual 

differential expression (DE) between genes. The most widely used technique for 

modeling DE is based on the negative binomial distribution. The reason to use NB as a 

model for count distributions, is that read count data has been observed to be 

heteroscedastic and over dispersed, which cannot be modelled using a Poisson or 

binomial distribution [81] [82]. The challenge with using the NB, is that for each gene 

we must estimate a dispersion parameter. If we have large sample sizes, this is not an 

issue, but in practice, we often do not have enough samples to reliably estimate 

dispersion. One way to deal with this issue, is take advantage of the large number of 

genes available in an RNA-seq experiments, and model the dispersion using the data 

from multiple genes with similar expression ranges [79, 80]. Once we have 

appropriately modeled our data, differential expression can be calculated in different 
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ways, such as using a generalized linear model, which is implemented in both DEseq2 

and EdgeR.  

Pathways and enrichment analysis 

Given the large amounts of data produced in modern sequencing experiments and the 

thousands of genes that can be active in a given cell, interpreting results of 

transcriptomic experiments is often a challenge. Even the output of a relatively simple 

DE analysis can give hundreds or even thousands of DE genes in some cases. Thus, 

any tools that can add functional biological knowledge, both to individual, but also to 

groups of genes can greatly aid in the interpretability of our data, and give us deeper 

insight into the molecular functional background of the results in our studies. One 

important resource in this context is Gene Ontology (GO) [83, 84]. GO was created at 

the turn of the millennia as a response to the ever-growing molecular biological 

knowledge. The idea was to create a structured database of standardized functional 

biological knowledge of genes, designed to be easy to use in computational analysis. 

There are currently over 45,000 terms and 134,000 relations in the GO database, from 

over 7 million genes and gene products in over 3200 species. The terms and relations 

have been carefully constructed over 20 years, based on scientific literature and expert 

domain knowledge.  To give a specific example, we can look at GO:0070125, 

mitochondrial translation elongation. It is defined as “The successive addition of amino 

acid residues to a nascent polypeptide chain during protein biosynthesis in a 

mitochondrion”[84] .  The term itself is under the translation elongation (GO:0006414), 

which is part of translation (GO:0006412), which is part of gene expression 

(GO:0010467) etc. Given a gene ID, it is the easy to retrieve functional pathway 

information through databases, such as BioMart [84]. 

Once pathways have been identified in dataset, based on GO, it is often of interest to 

perform enrichment analysis, thus statically quantifying if certain biological processes 

are related to the features the dataset phenotypes. For example, if we perform DE 

analysis based on FE and then find certain pathways enriched, we then have evidence 

of the functional biological background of FE. Thus, the general principle of pathway 

analysis is that there will be some abnormal distribution of pathways for genes which 

are related to specific biological conditions.  There are many different methods for 

pathway enrichment, that each have particular features, and already back in 2008 Huang 
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et al included a list of 68 tools in their article on the topic [85]. They generally work by 

calculating enrichment of GO terms using an appropriate background, and then 

applying some common statistical test, such as a Fisher test, χ2 test or using the 

hypergeometric distribution [85, 86].  It is then important to apply multiple testing 

correction when testing for pathway enrichment, due to the many GO terms a gene set 

can contain. Choosing a background set is relatively straightforward in a transcriptomic 

experiment, as we can use the total of set of expressed genes. Examples of popular 

methods include DAVID [87] and GOrilla [86].  

All the concepts mentioned above apply in an analogous fashion to metabolite analysis, 

just based on different tools and databases. One tool for metabolite pathway analysis is 

IMPala[88]. Given a set of annotated metabolites, IMPala searches for pathway 

information using 11 different databases, among them the KEGG[89] and 

Reactome[71]. Given pathway knowledge, it is then also possible to link metabolites to 

genes in shared pathways. 

Network Analysis 

If we want to move beyond DEA and individual gene analysis, the next logical step is 

to use network-based methods. If we imagine the transcriptome of a cell, there is a 

continuous process of transcription, which in turn is being regulated by transcription 

regulators, such a transcription factors, or post-transcriptionally, by miRNAs [90]. 

Thus, a picture emerges of a widely interacting transcriptome. Furthermore, genes in 

the same metabolic pathways or feedback systems will naturally have related 

expression patterns [91, 92]. If we look at metabolites, a similar reasoning applies. 

Metabolites can be the bi-products of the same processes, form part in related pathways 

and are known to have network like structure [93-95].  

A network is defined by two properties: a set of nodes, and the edges between them. 

Nodes can then represent genes or metabolites, with the edges indicating the connection 

between them. There have been several proposed methods for gene network analysis 

proposed in the past [92, 96, 97], however, here we will focus on one of the most 

popular and widely used, Weighted correlation network analysis (WGCNA) [98]. 
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WGCNA 

The final goal in WGCNA is to identify biologically meaningful modules, which can 

be analyzed via pathway analysis and /or correlated with phenotypes of interest. The 

first step is to create a network based on gene similarities. Perhaps the simplest and 

most obvious metric for relation between quantitative measurements is correlation. In 

particular Pearson correlation [99] is widely used, which is the linear correlation of two 

variables, ranging from -1 (perfect negative linear correlation) to 1 (perfect positive 

linear correlation),. The first goal is to create an adjacency matrix based on all pairwise 

correlations between all gene pairs. In WGCNA, instead of using pure correlations for 

the edges between two genes, gene i and gene j, the correlation values are raised to a 

power β, as seen in Figure 4. The β value is chosen based on a scale-free network 

topology criterion. A scale free network is a network where the connections follow a 

power law, which means that the fraction of nodes !(9) that have k connections is  

!(9)~9;< for large k. It has been observed that real networks, such as communication 

and, most importantly, biological networks are observed to have a scale free topology. 

The optimal fit for β is then the value that maximizes the =' value between the linear 

regression of  >?@AB(!(9)) and	>?@AB(9).  In general, WGCNA accepts a network as 

scale-free if =' > 0.8 

  

 

Figure	4	Schematic	WGCNA	network,	with	genes	and	associated	edges.		 
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Once a scale-free adjacency matrix has been created, the next step is to identify 

similarity between nodes for a clustering into modules. To do this, WGCNA uses the 

topological overlap between nodes, which gives us a topological overlap matrix 

(TOM). This measure reflects how interconnected two nodes are, and has been found 

to be biologically meaningful. The TOM is calculated as follows: 

HIJ =
lIJ + LIJ

minP9I, 9JQ + 1 − LIJ
 

With >IJ = ∑ LISLSJS  and 9I = ∑ LISS . It is possible to show, that if LIJ is between 0 

and 1, which it will be if it is based on correlation, that HIJ will also be between 0 and 

1. HIJ  is a similarity measure, and WGCNA uses 1 − HIJ  for the clustering, thus 

transforming it into a dissimilarity. The TOM dissimilarities are then hierarchically 

clustered, and a cutoff is selected in the resulting dendrogram. The branches based on 

this cutoff will be the modules. There is no exact way of defining cutoff thresholds, but 

WGCNA includes default suggestions[98]. After modules have been generated, there 

are many analysis possibilities, including but not limited to: correlating module 

eigenvalues with phenotypes, module pathway analysis and hub gene analysis. All of 

the above methodology was first presented by Zhang et al in [100].  

While WGCNA was designed for gene networks, given the general biological 

motivation of the method, it is natural to apply it to metabolites. Indeed, there are 

several studies where WGCNA has been applied in metabolomics analysis [51, 101].     

eQTLs 

Unraveling the functional genetic background of complex phenotypes is often a 

challenging endeavor. While many genetic markers have been associated with specific 

phenotypes and diseases, the functional effect of genetic variation has been more 

elsuive [102] [103]. One way of analyzing this problem, is to link genetic variance 

directly to gene expression. This offers a straightforward connection between genetics 

and function, and aids in functional interpretation, as we can take advantage of gene 

pathway information. This type of analysis is called expressed quantitative phenotype 

loci (eQTL) mapping. Thus, an eQTL is a locus, which can explain the genetic variance 

of the expression of a gene [104]. eQTLs can be separated into two major categories: 

cis-eQTLs, which are local acting and trans-eQTLs, which are distally located in 

relation to gene they are acting on. More analysis has been done on cis-eQTls [105]. 
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As cis-eQTLs act locally, they have a more direct functional link to expression of the 

gene through local genomic context. Furthermore, the number of potential cis-eQTLs 

only grows linearly with the number of genes, making feasible both computationally 

and statistically. In contrast, in trans-eQTL analysis, one must test all possible 

association between each locus included and each gene. This gives rise to 

computational issues – testing the relation between 105 SNPs and genes requires in the 

order of 108 tests. This in turn, give multiple testing problems making it even more 

difficult to meaningfully detect trans-eQTLs, especially as they are reported to have 

smaller effect sizes than cis-eQTLS [105, 106]. It is therefore important to have good 

data strategies when doing trans-eQTL analysis, which could include appropriate 

filtering of both genetic and expression data using measures such as expression 

heritability [107], relation to a phenotype of interest [108] or other meaningful 

measures. 

When modelling eQTLs, regardless if it is cis or trans, the actual modelling will look 

the same. There are essentially two option – additive modelling, were genotypes are 

transformed into a numeric scale, such as 0 (only reference alleles), 1(heterozygous) 

and 2 (only non-reference alleles) and fit as a continuous variable, or a factor model, 

were each genotype is treated as separate factor level. The factor level requires more 

parameters to be estimated, but is more flexible as it can fit a wider range of scenarios, 

such as dominant or recessive models [109]. One useful tool for eQTL analysis is 

Matrix eQTL [110]. Matrix eQTL is able to do both additive and a factor-based model, 

and due to both computational efficiency and heuristics is very time efficient. This 

allows it to perform cis and trans eQTL analysis on modern datasets.    
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Paper A - Metabolomic networks and pathways associated 

with feed efficiency and related-traits in Duroc and Landrace 

pigs 

Motivation 

Measuring FE related phenotypes in pigs is costly. Therefore, if non-invasive 

techniques could identify predictive FE biomarkers, this method could be applied as an 

early screening tool in breeding programs, thus saving resources. One possible source 

for non-invasive biomarkers is the blood metabolome. Beyond practical applications, 

there is also a scientific interest in identifying links between FE and the blood-

metabolome, namely, to strengthen our understanding of the functional background of 

FE. Blood is an ever-changing tissue, as it is responsible for transporting a wide range 

of processes, from sugar to immune response. It has also been shown that the blood 

metabolome is affected directly by environmental factors [111]. If we combine this with 

the very high growth rate of pigs, one can easily hypothesize that early metabolite 

screening would not be effective, as the blood, metabolome may be too transient. 

Therefore, we also wanted to demonstrate that the blood metabolome has enough 

temporal stability and biological impact to be a useful predictive biomarker. 

Data 

The results of this paper were based on 109 pigs, including 59 Duroc and 50 Landrace. 

Blood samples were collected from each pig at two time points, one at the start of the 

FE testing phase and a weight close to 28 kg, and again 45 days later. Non-targeted 

metabolomics analysis was performed on blood plasma using LC-MS. Based on this, 

729 metabolites were identified in the data. 

Methods 

To show that the metabolites were meaningful overall and somewhat stable over time, 

we performed PCA of all metabolites, and fitted a linear model between the two 

sampling time points for each metabolite. The log-normalized metabolites where 

adjusted by extracting the residuals from a mixed linear-model, to correct for fixed 

effects and the random pen effect. Adjusted metabolites were then analyzed using a 

simple linear model, for daily gain (DG) from birth to end of testing, early daily gain 

(EDG) from birth start of test phase, testing daily gain (TDG) during test phase, RFI 
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and feed efficiency (FE*). FE* in the context of this paper will be the ratio between 

growth and feed intake, in contrast to FE, which will still denote feed efficiency in 

general.  Models were performed separately on breed, time point one/two (TP1/TP2), 

and a joint time point model. The Kolmogorov-Smirnov test (KS-test) was used to 

assess the p-value distribution of each model in comparison to a theoretical uniform 

distribution. WGCNA was used to create metabolite modules based on the Spearman 

correlation of adjusted metabolite concentrations. To associate modules with 

phenotypes, a linear model between the module’s eigenvalues and our phenotypes was 

applied. Metabolites with p-value < 0.05 in the linear modelling, and from modules 

with a phenotype-module correlation > 0.2 and p-value < 0.1 were selected for further 

pathway and gene-metabolite analysis. Pathway enrichment analysis was done using 

IMPala. Gene-metabolite networks were generated using Metscape.   

Results 

Based on the visualization of the first two principle components from the PCA, we saw 

a clear division into our four sampling groups – Duroc vs Landrace and TP1 vs TP2. 

The linear relationship between metabolites showed that over half of all metabolites 

had significant (p-value < 0.05) linear relationship between TP1 and TP2. KS-test 

revealed a left-skewed p-value distribution for most of the models across metabolites 

in FE and RFI, with a maximum p-value of 0.25 across all 10 models from these two 

phenotypes. Similar results were also found for the daily gain phenotypes, albeit even 

more significant.  As for individual metabolites, based on an FCR < 0.05, we found 1 

metabolite for FE*, 0 for RFI, 9 for EDG, 21 for DG and 37 for TDG. The most 

significant results were in Duroc TP2 and TDG. Based on the WGCNA analysis several 

modules correlated with our phenotypes, with the top two modules both being in Duroc, 

one associated with FE* (cor = 0.34) and the other with TDG (cor = 0.4). The pathway 

enrichment and gene-metabolite network analysis revealed many pathways, genes and 

hub metabolites in the four different sampling groups, with highlights being cholesterol 

sulfate, which was involved in FE*, TDG and RFI in Duroc TP2 and RFI in Landrace 

TP1 and 2-Aminoadipate, which was related to TDG in Duroc TP2 and EDG and DG 

in Landrace TP2. 
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Conclusions 

We demonstrated that the blood metabolome is generally biologically relevant, and that 

it shows stability over time, despite the quick morphological changes happening in pigs 

during the sampling period. On an overall level, we found an significant association 

between FE phenotypes and the blood metabolome, and even more significant for 

growth phenotypes. In particular, we observed that metabolite profiles of pigs were 

associated with phenotypes that had not been measured yet, as the Duroc/Landrace TP1 

KS-tests for FE*, RFI and TDG had a p-value < 0.1 for every category except Landrace 

TP1 – FE, which had a p-value of 0.25. For the metabolites individually, there were 

only limited results, except for TDG and DG. Based on the linear modelling, metabolite 

networks and gene-metabolite networks, we identified several metabolites that could 

be potential phenotypic biomarkers. Overall, our results showed promise for the 

application of metabolites in pigs for FE, and in particular, in growth phenotypes, while 

also revealing the challenge of analyzing FE in general.   
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Paper B - Genome regulation and gene interaction networks 

inferred from muscle transcriptome underlying feed 

efficiency in Pigs 

Motivation  

Muscle is the most important tissue in pig production, as it harbors most of the 

economic value of the carcass. Indeed, pig farmers in Denmark are payed by the 

estimated amount of meat in a carcass. Beyond this, muscle is a major metabolic tissue 

with a large role in energy metabolism as a whole. The overall goal with improving FE, 

is also mainly directed towards the improvement in lean weight of animals, which 

represent the muscle tissue. Thus, there are strong motivations to analyze the relation 

between FE and the muscle transcriptome, to shed light on the molecular differences 

between more or less efficient animals. Naturally, previous studies exist analyzing the 

pig transcriptome for FE. Our study offered several novelties in relation to the past 

findings. As FE is a complex trait expressed through multiple factors, the individual 

effects are expected to be weak, thus one should aim to maximize the data available. 

Our study had the highest number of samples reported in this type of study. Previous 

studies had focused on extreme outliers or used divergently bred populations. We used 

pigs from a real breeding, population with a range of efficiency values. In the real 

world, pigs are not divergently selected for FE, and there are no low FE selected pigs. 

Therefore, our study design was more realistic and thus, applicable. Finally, two breeds 

were included in our analysis, instead of only one. This can be seen as a weakness, as 

it introduces an extra variable into the modeling, but it also means that any results we 

might find could be more broadly applied.  

The ultimate goals of the analysis were to gain new insight into the molecular biological 

background of FE in muscle tissue and identify genes or pathways that could act as 

biomarkers for FE.  

Data 

This study was based on a subgroup of 41 pigs from our main pig group (described in 

Paper A), including 13 Duroc and 28 Landrace pigs. Muscle tissue samples were 

collected immediately post slaughter, and RNA-Seq was performed on each sample. 

Methods 
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 In Paper B, we applied DEA, gene expression interaction analysis, gene network 

analysis, pathway enrichment analysis and comparative functional analysis. DEA was 

done to identify DE genes, using three different methods, Limma, EdgeR and DESeq2. 

Due to the overall anti-conservative distribution of our p-values in relation to FCR, we 

selected a group of genes based on the comparison between our empirical p-value 

distribution and uniformly distributed p-values for pathway analysis. All pathway 

analysis was done using GOrilla, utilizing the full set of expressed genes in our samples 

as background. These same genes were also used in a gene-gene interaction analysis to 

identify possible pairwise interactions among the top FCR genes, and the most 

interacting genes overall. WGCNA analysis based on all genes was done, clustering the 

genes into modules. Module eigenvalues were then correlated with our traits, and the 

genes in top correlating modules were subjected to pathway enrichment analysis. 

Finally, top DE genes for FCR and breed were analyzed for enrichment in differentially 

expressed genes in human muscle transcriptome pre- and post-exercise from three 

separate studies.  

Results 

In the DEA, we identified 14 DE genes with FDR < 0.1: two genes in Landrace, nine 

in Duroc and four in a common DEA for both breeds. The highlights included two 

mitochondrial genes (MRPS11 and MTRM1), and TRIM63, which has been found to 

be a biomarker for exercise induced muscle damage [112]. Based on the overall p-value 

distribution of DEA analysis, we selected genes in the common analysis for pathway 

analysis, using the overlap between all three DE methods, based on each individual 

analysis’ divergence from uniformity in the p-value distribution. Pathway enrichment 

analysis from the DEA genes revealed five enriched pathways, with 4 being related to 

mitochondrial gene ontologies.  

Based on our pairwise gene interaction analysis, we saw that the interaction p-value of 

individual genes were left skewed in relation to bootstrapped sets of p-values, as 193 

genes out of 853 had more anti-conservative p-values than the most anti-conservative 

bootstrapped results. Given the context of the analysis, we chose a conservative 

heuristic approach and reported the top 20 genes based on their overall interaction. This 

included several interesting genes, such as transcription regulators, lipid metabolism 

genes and mitochondrial genes. Interestingly, the most interacting gene according to 
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our analysis was ETV1, which is a transcription factor whose activity is mediated by 

androgen and involved in overall growth [113].  

The WGCNA gene network analysis revealed two modules that were correlated with 

FCR (correlation ≥ 0.4). Pathway analysis of the first module revealed high enrichment 

of mitochondrial genes, grouped into three overall ontologies:  translation elongation, 

electron transport chain and hydrogen ion transmembrane transport. Furthermore, in 

this module, seven of the top 10 most connected genes were all from the same gene 

group, the NADH ubiquinone oxidoreductase group (NDUF). The other significant 

module included 3744 genes, and many enriched pathways, which were summarized in 

the DNA repair ontology. This included ontology related to DNA, RNA and 

amino/nucleic acid processing and metabolism. Combining this with the size of the 

module, the interpretation could be that the module is related to generic growth and 

maintenance processes in the cells. As the module was positively correlated with FCR, 

one can then speculate the higher expenditure on these processes lead to worse 

efficiency.  

Finally, to improve our understanding of the functional nature of FE in muscle, we 

hypothesized that genes differentially expressed between our two breeds and FCR 

would be enriched in transcriptomic analysis of muscle pre- and post-exercise. We saw 

a consistent pattern of enrichment of both breed and FCR associated genes across three 

different human studies. 

Conclusions 

We showed that while individual gene relations to FCR may be weak, we could still 

identify interesting results if we rely on overall distributional effects. We identified 

interesting genes based in DEA, gene-gene interaction analysis and from the most 

connected genes in FCR related modules.  Based on this, we were able to confirm 

previous finding of the relation between FE and mitochondrial in a novel context and 

applying novel methodologies for FCR. We identified the possible involvement of the 

DNA repair pathway group as relating to FCR. We established a novel link between 

FCR and exercise induced changes in muscle. Based on our analysis we propose that 

mitochondrial genes and the NDUF group in particular could be used as FE biomarkers. 
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Paper C - eQTL and pathway enrichment analysis on FCR 

and mitochondrial genes of Danish performance tested pigs 

Motivation 

The analysis of the genetic background of complex traits is often challenging. In the 

context of animal science traits, this can be particularly difficult, as it prohibitively 

expensive to do functional molecular studies based on FE on large animals, such as 

typical farm animals. eQTL analysis, combined with selecting genes linked to FCR is 

one strategy for connecting genetics to pathways without needing overly complex 

experimental designs. This can then lead to the identification of possible genetic 

biomarkers for FCR. One further motivation for this study was to tackle the issue of 

sample size versus the complexity of trans-eQTL. How can one validate trans-eQTLs, 

given that there are so many tests involved, combined with their postulated weak 

effects? We hypothesized that low p-value trans-eQTLs would be enriched for genes 

that are highly interactive in general, and that would specifically interact with genomic 

context.  

Data 

The data in this paper came from a subset of 38 pigs from the 42 pigs included in paper 

B. These pigs were genotyped using the GGP Porcine HD array (GeneSeek, Scotland, 

UK), including 68,516 SNPs on 18 autosomes and both sex chromosomes. 

 Methods 

The first important step was to filter the input data in conservative, but non-arbitrary 

way. For this, we started by selecting the 853 genes we had identified in paper B from 

the enrichment in the DEA. We also included all genes with a mitochondrial ontology, 

as these were identified to be associated with FE not only in our study, but in several 

other studies in multiple species. After expression-based QC, the final list included 

1425 genes. The genotype data was filtered based on two criteria: a minor allele 

frequency > 0.3 for each genotype, and an LD filtering grouping neighboring SNPs 

linearly across the genome into clusters if the R2 > 0.9 between all possible pairs in 

each cluster. We then performed both additive and factor based eQTL analysis using 

Matrix eQTL. We observed similar results as in paper B – a relatively limited set of 

individual results post multiple testing correction, but a quite significant enrichment of 
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low p-values. Thus, we selected the top 28147 top trans-eQTLs based on the enrichment 

of p-values below 0.01, which corresponded roughly to the top 10% trans-eQTLs with 

p-value < 0.01, for targeted pathway enrichment. The targeted pathway enrichment was 

specifically based on ontologies which were related to expression regulation and DNA 

binding.  

Results 

We identified 15 eQTLs (14 trans, 1 cis) with a FDR < 0.1. Beyond these, we also 

presented and did qualitative analysis of the top 10 eQTLs in each model category 

(additive/factor based and cis/trans). Several of the eQTL associated genes were 

differentially expressed among genetically divergent pig breeds, or other contexts 

indicating possible genetic regulation potential. In our targeted pathway analysis, 

transcription factors, and negative regulation of expression were highly significantly 

enriched, in comparison to both the input set and the overall expressed genes in the 

tissue. Furthermore, both DNA binding and DNA-binding transcription factor activity 

genes were also highly significantly enriched.  

Conclusion 

We identified a set of potential eQTLs , using both statistical and qualitative evidence. 

We also presented novel strategy for validation of trans-eQTLs, based on in-silico 

biological validation. The enriched pathways we found are not only interesting as a 

result in our pig population, but present a novel way of dealing with and analyzing the 

computational and statistically difficult topic of trans-eQTLs.   
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Discussion, conclusion and perspectives 

Paper A 

To the best of our knowledge, this was the first time a study was published analyzing 

FE and DG traits using metabolomics in pig. The work in this paper showed the 

potential of metabolomics for FE and even more so in DG, but also identified the 

challenges of the analysis of FE, given its complex multifactorial nature. This challenge 

was a common theme in all publications, thus we will discuss it further in the overall 

perspectives.   

What do other studies tell us of metabolomics in pigs or possibly other livestock 

species? The only other FE metabolomics full publications we were able to identify 

were all in in cattle [51, 114-116]. Given the large morphological differences between 

pig and cattle in general, and more specifically, their completely different digestive 

systems, comparing specific metabolites from these studies may not be a good strategy. 

As we can safely assume that FE is just as multifaceted in cattle, the studies can give 

us an idea of the overall power of metabolomics in an FE context. Across all four 

studies, they report 1, 4 and 8 metabolites with significantly different concentrations 

across FE groups, with the last study [114] not reporting any specific metabolites due 

to their analysis methods. Thus, we see similar picture as in our study, with only a 

limited set of significant metabolites. We do not know if they also found an 

overrepresentation of low p-values, as the overall distribution of results is not reported. 

If we look at studies involving production pigs, regardless of what phenotypes were 

studies, Goldansaz et al. report 18 pig metabolite studies in blood plasma [117]. These 

were identified using text mining techniques, and included  somewhat relaxed criteria 

for what a metabolomics study is, namely a minum of 8 metabolites. In the litterature 

it is hard to find a good comparison to our study. There are several studies looking at 

the impact of different type of diets on the metabolome, but all our pigs ate exactly the 

same feed [118-120]. Another major category is pig animal model studies  for various 

health conditions [121-124]. As the pigs in these studies are subject to drastic 

experimental conditions, it does not relate to the stable and identical environment for 

our pigs. There were also more general studies without a treatment group, such as one 

on analyzing sex dimorphism in the metabolome [125] and one on breed differences in 

the metabolome. In the breed study, they find 5 metabolites to be different between 
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breed. The breed was not the focus in our study, but we did see clear separation based 

on PCA, and although not in the article, there were significant breed difference in the 

metabolome. Overall, the studies above do not offer much comparison, except for 

possible methodological strategies.  

How should we then view paper A? The main usefulness of the paper, is as a pilot 

study. It offers us the first glimpse into the power of the metabolome for FE and growth 

phenotypes. How should we continue from this? First, we should discuss what could 

be improved within the framework of what was already done. While we performed 

many layers of analysis, including metabolite, pathway and gene information, in the 

end, we did lack some clarity in the overall results. This does not mean the results are 

invalid or done improperly. However, due to the various selection criteria and layers of 

networks, it became a bit unclear what the exact robustness or power of the results was. 

As several metabolites were quite significant, especially for TDG, these could have 

been highlighted more. In the pathway enrichment, perhaps we should have selected 

metabolites on a simple criterion based on the linear modelling, and then from the top 

modules from WGCNA. Other improvements could be the refinement of the statistical 

analysis. A more thorough analysis of how metabolites are distributed, what an 

appropriate model is for metabolite data and how to make the analysis robust could be 

interesting for further analysis. Here a good start point could be many of the studies 

mentioned above.  

The further analysis and applications of this topic has great potential, and many 

possibilities. Looking from a molecular perspective, one would like to add more layers 

of data, such as genomic and transcriptomic data. Thus, we could really take advantage 

of the pathway and gene-metabolite networking techniques already applied. If we think 

from a computational perspective, given the complex nature of the data, it seems that 

the application of machine learning, unsupervised learning methods and some feature 

selection could be interesting in identifying the predictive power of the metabolites. 

Performing feature selection in relation to a trait of interest can also add knowledge to 

be used in pathway and gene-metabolite analysis.  The goal with more computational 

analysis would be to identify the predictive power of metabolites at an early age in 

relation to the growth and FE. If the goal is to use metabolomics in a practical 

production context, there are several interesting strategies. Before including any 

metabolite data in a breeding context, one must ensure they are heritable. Thus, a study 
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demonstrating the heritability of metabolites associated with traits of interest could be 

interesting, as twin studies have shown a wide range of heritabilities in metabolites 

[126]. One could also simply include raw metabolite data in breeding, in a similar way, 

as genomics have been used metabolomics breeding. This is not a realistic goal at 

moment from a practical perspective and would require more research showing it is 

worth doing, including all phenotypes one would like to include in a breeding program. 

In general, all of the above-mentioned ideas would benefit from more data. Perhaps 

using the initial results, one could devise a more targeted set of metabolites for further 

analysis, and thus make it more cost effective to expand. The target of this analysis was 

FE, but one should not forget the importance of daily gain, as it had the second highest 

improvement value in Danish pigs. Here the results were quite promising in Duroc, 

indicating the further analysis of potentially early screening metabolites could be 

fruitful. Beyond genetic factors, it may also be the case that the metabolome is 

representing overall health, thus the screening could be useful regardless of metabolite 

heritability, if the metabolites are predictive for pigs that will perform poorly in testing 

due to underlying issues.  

Paper B 

In paper B, the muscle transcriptome of pigs was analyzed in relation to FCR, with the 

novelty of using a continuous FCR as the phenotype, in contrast to using low and high 

FCR/RFI groups based on divergent selection or highly extreme value selection. 

We went through the literature and looked at all previous studies in the paper, so we 

will just paraphrase the main points here based on the four papers identified in the 

literature, with some additional comments [127-130]. In general, it was found that most 

studies were lacking in power, used weak statistical thresholds and used divergence 

selection for FE. The last point it key in the novelty of our study, as in real production 

pigs there is no selection for poor FE.  The most common results, which we also found, 

was the relation between mitochondria and FE in muscle. Given the commonality of 

the mitochondrial relation, perhaps what is needed is a deeper analysis of this result. 

What is the causal structure, do more efficient animals have higher mitochondrial 

activity or more mitochondria to begin with, or is it a side effect of efficiency?  

Increased mitochondrial activity under dietary restriction has been reported, indicating 

that a link to metabolic efficiency when resources are scarce [131]. Furthermore it has 

been reported that mitochondrial activity is involved in myoblast differentiation [132], 
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and mitochondrial activity has been linked to protein synthesis through the mTOR 

pathway [133]. In a small study from 2009 in cattle [134], higher activity, and not 

higher number of mitochondrial is reported in low RFI animals. All of these studies 

indicate that mitochondria really do play a role in FE. The other molecular finding we 

had, the association of DNA repair with FCR, was a novel finding. In our analysis, 

DNA repair came up as an umbrella term for general nucleic acid metabolism and 

process. One can argue that there is a biological interpretation of our results, as higher 

DNA repair was associated with higher FCR, and thus less efficiency. This resonates 

well with the idea of the effect of biological maintenance on efficiency.  In the literature, 

there are only extremely vague links our observed effect, with a study reporting change 

in genes regulating DNA repair under feed restriction [135] and one candidate gene 

related to DNA repair in a QTL region for RFI in Nelore cattle [136].  We should in 

general be careful with this result, especially as it came from a module in our network 

analysis that contained roughly one third of the genes. This can make use think that it 

is simply a cluster for genes that do not fit other places. Thus, more careful analysis and 

new studies may be needed to confirm this.    

The other major finding in paper B was a relation between exercise and FE. This was 

an interesting novel finding demonstrating the power of modern bioinformatics. As we 

are able to access data from many studies, and convert genes between species, we can 

test many interesting hypotheses. Here the idea was simple, after exercise, a muscle 

grows. As efficient muscle growth is key for FE we hypothesized there could be such 

a link. Importantly we do not imply that pigs should do exercise, but that pig muscles 

are in an exercised state without any exercise. As with most of the results, this need 

further investigation, but also serves to show that there are many strategies one can use 

to link trait, genes and function. As there is a wealth of both human and animal studies 

with public data, many results can likely be found based solely on in silico approaches.  

What is the perspective of paper B? While we used more samples than previous studies, 

it is clear, that with FE phenotypes, more is better. Furthermore, given the complex 

nature of the trait, samples from more tissues are also needed, such as liver, and possibly 

brain, as we have casually observed that Duroc boars, which are the most efficient on 

average, is generally are less active, thus having behavioral differences. The study of 

the transcriptome for FE will continue to be difficult, as it is costly to sample a large 

number of animals and test them for FE. Even if we can collaborate with a commercial 



 42 

breeding test station, the tissue of the best performing animals will not be available. 

One other avenue we did not pursue was the analysis of the DG phenotypes, which 

showed promise in the metabolomics paper. The reasons for this was that our overall 

aims and goals were focused on FE, as it is the more important and difficult phenotype 

to study. Applying transcriptomic data in a practical breeding context is also a 

challenge. Instead, one could think of a more targeted approach, based on the 

mitochondrial connection, as there are techniques for measuring mitochondrial activity. 

If we can confirm the heritability of the mitochondrial effects, and demonstrate more 

convincingly the relation to FCR, this could be used as a tool for screening which pigs 

should do the more thorough testing phase, if non-invasive methods can be 

commercialized and applied. 

Paper C 

In the final paper, our aim was to identify potential genetic regulation of genes with 

potential to be associated with FCR. It was the first eQTL study applied to FCR to the 

best of our knowledge.  

Comparing eQTL studies, as mentioned in paper C, is not a very straightforward thing 

to do. What is a bit easier, it to compare methodologies, overall strategies and 

applications? In our case, we performed a quite straightforward and streamlined 

analysis based on conservative cutoffs, and gene selections. Other studies, with more 

samples, have included more genetic components, such as heritability calculation of 

expression levels and pre-GWAS on SNPs [137]. Given our starting point, these 

strategies were not appropriate, so instead we chose to develop an in silico testable 

hypothesis that could show that the result were meaningful, but also develop new ideas 

for how to view trans-eQTLS. While the idea of trans-eQTLs being associated with 

transcription factor is not necessarily novel, directly relating trans-eQTLs with genomic 

context as we did certainly seem to be. This can have consequences for future trans-

eQTL work. First, it would be interesting to see if these effects apply in other datasets. 

As our observed enrichment were quite strong, there is at least reason to believe so, 

beyond the theoretical biological considerations of the paper. Given the statistical 

challenge of genome wide trans-eQTLs, if our results are robust, techniques for 

conditioning results based on gene type, or on empirical interaction data, could assist 

in the analysis. In the paper, we also presented individual possible cis and trans-eQTLs. 

While results were not overly strong, the evidence from the pathway enrichment 
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analysis did lead more credence to these results, which in some cases was backed up 

by qualitative evidence.  

Applying these results as is in a pig production context is straightforward. If one 

identified eQTLs with strong evidence of relation to both FCR/RFI and with the gene 

associated having the same relation, one could consider using weighted BLUP, thus 

giving different weight to different SNPs. This has been shown to work in the literature 

[138, 139], but at our current knowledge level it is not clear if it would be applicable in 

pig production. From a basic research stance, it would be interesting to analyze the 

same pathways we chose at in other datasets. It would also be interesting to use the 

genomic context as a predictive measure. For example, by identifying DNA binding 

genes which are targeted by trans-eQTL, and try and predict their associated binding 

sites, and how genetic variation in both gene and target modulate function.  

Overall Perspectives 

In the work in this thesis, the common thread was the difficulty of FE as a trait whether 

as FCR or RFI. Due to the multifaceted nature of the trait, and the relative subtlety of 

the phenotype, large sample sizes are needed for the identification of significant 

individual effects. This shifted our focus to methods that could encompass multiple 

results at once, such as network analysis and pathway enrichment.  We often observed 

that the p-values for our FE related effects were acting as if they were generated using 

a loaded die rolling an excess of sixes. Thus, there often was a very significant 

enrichment of low p-values, but they seemed to be lower bounded, thus disappearing 

after multiple testing correction. This is both encouraging and challenging, as it shows 

we were able to find general effects, but makes it difficult to be very specific, except 

for a limited set of results. All three papers in this thesis did identify some potential 

interesting individual genes/metabolties/SNPs, but in the same vein, all three papers 

indicate the need of more data. The papers are also inviting for the possibility of the 

integration of the data presented, as it was the same group of pigs in all papers. Given 

more time, we could also have applied the ideas in paper B and C to DG related traits, 

although this was not the focus of the overall project.  If we view this thesis from as a 

basic research point of view, there were several novel strategies and methods applied 

in novel contexts, which have contributed to the understanding of FE, but also offer 

potential in general transcriptomic, metabolomic and eQTL analysis. If we view the 

results from a pig production point of view, we have shown that there is potential in 
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both transcriptomic, genetic and metabolic to act as biomarkers for production traits, 

but the practical application requires more work.   

During the thesis, new knowledge was acquired, which could offer avenues for 

improving furthering the research presented here. Thus, both more advanced 

computational, statistical, and given enough data, genetic methods could be applied in 

the future, using the knowledge that we have developed a basic framework of 

understanding of FE in a metabolic, transcriptomic and genetics. Beyond the idea of 

advancing the methodologies, the importance of large sample sizes and good study 

design cannot be overstated. Given the highly reliable conditions in the Danish breeding 

system, it does offer possibilities for designing interesting studies building on the 

studies performed here. 
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Metabolomic networks and 
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efficiency and related-traits in 
Duroc and Landrace pigs
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Improving feed efficiency (FE) is a major goal of pig breeding, reducing production costs and providing 
sustainability to the pig industry. Reliable predictors for FE could assist pig producers. We carried 
out untargeted blood metabolite profiling in uncastrated males from Danbred Duroc (n = 59) and 
Danbred Landrace (n = 50) pigs at the beginning and end of a FE testing phase to identify biomarkers 
and biological processes underlying FE and related traits. By applying linear modeling and clustering 
analyses coupled with WGCNA framework, we identified 102 and 73 relevant metabolites in Duroc 
and Landrace based on two sampling time points. Among them, choline and pyridoxamine were 
hub metabolites in Duroc in early testing phase, while, acetoacetate, cholesterol sulfate, xanthine, 
and deoxyuridine were identified in the end of testing. In Landrace, cholesterol sulfate, thiamine, 
L-methionine, chenodeoxycholate were identified at early testing phase, while, D-glutamate, 
pyridoxamine, deoxycytidine, and L-2-aminoadipate were found at the end of testing. Validation of 
these results in larger populations could establish FE prediction using metabolomics biomarkers. We 
conclude that it is possible to identify a link between blood metabolite profiles and FE. These results 
could lead to improved nutrient utilization, reduced production costs, and increased FE.

With the expanding human population and requirement for nutrient-rich food, there is an increasing demand 
for improvement of meat production, but simultaneously, to decrease the input costs in terms of feed1. Thus, feed 
efficiency (FE) is the most important trait in commercial pig farming2 as increasing the amount of meat produced 
per feed is beneficial both economically and environmentally. Thereby, improving FE is beneficial for producers 
and increases the sustainability of pork meat production. Fortunately, FE is a highly heritable trait in Danish pigs 
(ranging from 0.34 in Duroc to 0.40 in Landrace), thus suitable for the genetic selection of pigs with high breeding 
values in breeding programs aimed at improving this economically important phenotype3.

Since FE cannot be measured directly, feed conversion ratio (FCR) and residual feed intake (RFI) have been 
used to evaluate the animal efficiency4. FCR determines the ratio of feed intake (FI) to output and found to 
correlate with growth rate and body weight3,5. RFI calculates the difference between the actual and expected FI6 
predicted based on production traits such as average daily gain (ADG)7. ADG is also considered important in 
commercial pig production as pigs with higher ADG can achieve a target market weight within a shorter period 
than those with lower ADG, thereby saving feeding costs8. Thus, selection for RFI has proved to be effective in 
improving the FE in pigs3,9,10. Selection for FCR will results in co-selection for other traits, such as body compo-
sition and ADG. In contrast, RFI selects for increased metabolic efficiency without the same side effects11–13. RFI 
and FCR are well correlated, with a reported correlation of over 0.7 in the literature3.

As part of the existing genetic determinants of FE, genome-wide association studies (GWAS) and differential 
expression (DE) analyses have reported a large number of polymorphism and genes for RFI or FCR in pigs9,14. 
However, despite these efforts, FE is a complex trait with many aspects involved and the functional molecular 
background is still somewhat elusive1. Among the approaches, the metabolomics profile reveals the relationship 
between animal genetics and physiological phenotypes15, thereby increasing the fundamental understanding of 
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efficiency and selection. Although affected by prandial activity, many metabolic processes underlie the transport 
of molecules through the blood. Blood is the sole way of absorption of nutrients into the body, and the blood 
metabolites are useful as a prime candidate for the study of FE in livestock16. In this context, it is also generally 
considered than improvement of RFI is associated with improved efficiency in the utilization of feed11,12 and thus 
improved utilization of nutrients.

An effective way to get insights into the interactions at a molecular level involved in complex phenotypes can 
be done by applying a network-based approach like weighted gene co-expression network analysis (WGCNA)17. 
In the context of metabolomics, the clusters (modules) represent specific metabolic processes or pathways and 
gives a better understanding of the function, interaction, and common regulatory mechanisms. WGCNA has 
been widely applied in pigs and several livestock species with fruitful results18–21. Therefore, one of the main 
objectives was to identify key blood metabolites associated with FE and related traits in Danbred Duroc and 
Danbred Landrace (referred to as Duroc and Landrace, respectively, further in the text). As the Durocs are more 
FE than the Landrace, the two breeds serve biological contrast in FE. Furthermore, selecting two diverse breeds 
can help generalize any results obtained versus only focusing on one breed.

Here, we applied an untargeted metabolomics approach for a better understanding of changes at a molecular 
level associated with nutrient utilization. We test the hypothesis that we are able to associate metabolite concen-
trations in blood at an early growth stage to predict future growth and FE measurements, and that metabolites 
profiles in general are associated with growth and efficiency phenotypes. We applied linear regression models to 
select the top metabolites predictive of FE, combined the results from network-based methods, and conducted a 
functional enrichment and pathway analyses to provide potential easy-to-screen candidate metabolite biomarkers 
and metabolic processes modulating FE in pigs.

Results
Descriptive statistics and linear model analysis. The phenotypic traits summary, including feed con-
sumed (FC), FE, daily gain (DG), and delta weight (DW), for 109 pigs from Duroc and Landrace breed is shown 
in Supplementary Table S1. Aiming to ascertain the metabolite profiles concerning FE, we collected the blood 
samples at two time points (start and end of testing phase) from two breeds of pigs, profiled for the metabolite 
changes. The start phase was labeled as time point 1 (TP1) and the breeds as Duroc 1 and Landrace 1, while the 
end of the testing phase as time point 2 (TP2), mentioned as Duroc 2 and Landrace 2.

The number of metabolites for each of the breeds at each time point with p-value ≤ 0.05 are provided in 
Table 1. The molecular mass, retention time, and p-values of these metabolites for each trait in the breeds at dif-
ferent time points and at the combined time points are provided in Supplementary Table S2.

With an initial dataset of 729 metabolites, only those metabolites with relative standard deviation >0.15 were 
used for each group based on the raw counts. This amounts to 691 and 702 metabolites in Duroc (TP1 and TP2), 
while 684 and 689 for Landrace (TP1 and TP2), which were subjected for further analysis. To test if the metabolite 
profile was associated with the most distinct factors such as age and breed, the data were visualized on the first 
two principal components, colored by time point and breed, as given in Fig. 1. Further, the significance of the 

Breeds* FE EDG TDG DG RFI
Duroc 1 P ≤ 0.05** 62 (30) 42 (24) 33 (23) 47 (32) 64 (31)

KS test 1.00E-05 0.19099 0.02317 0.02625 0
FDR ≤ 0.05*** 1 0 1 0 0

Duroc 2 P ≤ 0.05** 82 (40) 41 (26) 115 (68) 46 (26) 57 (28)
KS test 0 0.10092 0 0.8561 0.02687
FDR ≤ 0.05*** 0 0 35 0 0

Landrace 1 P ≤ 0.05** 40 (17) 59 (37) 44 (22) 67 (38) 41 (16)
KS test 0.25416 2.00E-05 0.00079 0 0.08764
FDR ≤ 0.05*** 0 9 0 1 0

Landrace 2 P ≤ 0.05** 54 (35) 37 (21) 77 (44) 73 (46) 53 (36)
KS test 0 0 0 0 0
FDR ≤ 0.05*** 0 0 0 0 0

Duroc 1,2 P ≤ 0.05** 83 (46) 24 (12) 54 (23) 96 (61) 69 (36)
KS test 0 0.004 7e-05 0 0
FDR ≤ 0.05*** 0 0 1 20 0

Landrace 1,2 P ≤ 0.05** 59 (35) 76 (40) 73 (37) 69 (34) 46 (29)
KS test 0.06419 0 0 0 0.16896
FDR ≤ 0.05*** 0 0 0 0 0

Table 1. Overview of metabolites associated with phenotypic traits in Duroc and Landrace at two time 
points. *Numbers (1, 2) represents time point 1 and 2 respectively; **Number of significant metabolites 
with p-value ≤ 0.05 (in the parenthesis are the number of annotated metabolites); P = p-value; KS 
test = Kolmogorov-Smirnov test; ***Number of metabolites with False discovery rate (FDR) ≤ 0.05; FDR = False 
discovery rate; FE = Feed efficiency; EDG = Early daily gain; TDG = Testing daily gain; DG = Daily gain; 
RFI = Residual feed intake.
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linear relationship for each metabolite between the two time points is observed (Supplementary Fig. S1). Over 
half of the metabolites have a p-value < 0.05 for the linear relationship between the two sampling points, indicat-
ing that there is a stability and predictability in the relative metabolite concentrations over time. In Fig. S2 we can 
see further evidence for this, with a visualization of all the pairwise log metabolite concentrations between the 
two time points, showing a clear overall relationship.

The significant metabolites at two time points were identified, as given in Table 1. A linear model was fitted 
to unravel the effect of blood metabolite on the FE phenotypes. The overall significance of divergence from the 
null hypothesis of no relation between metabolites and phenotypes using the Kolmogorov-Smirnov (KS) test, 
comparing the observed p-value distributions with the corresponding uniform distribution was tested. This was 
done to reveal, if there was an overall relation between the metabolites and our phenotypes. Most of the traits 
have significant metabolite profiles based on the KS test, signifying an overall relation between metabolites and 
traits. Based on the overall distribution of the KS test p-values, even the highest value of 0.19 in early daily gain 
(EDG) for Duroc could be significant based on FDR. In Duroc and Landrace, some metabolites were significantly 
associated with every trait, with the highest number identified in TDG (Table 1). The most significant results 
for testing daily gain (TDG) (35) and EDG (9) in Duroc 2 and Landrace 1, respectively, after false discovery rate 
(FDR) correction (Table 1) was identified.

We also did exploratory clustering analysis was done for the metabolites found significant for RFI in Duroc 
(36) and Landrace (29) (both time points combined) (Table 1, Supplementary Table S2). The heatmap plots in 
Duroc (Fig. 2) and Landrace (Fig. 3) grouped the metabolites in four specific clusters (Supplementary Table S5) 
and also the samples separately at TP1 and 2.

Metabolite network analysis. Since the metabolites interact and/or are a part of the same or related meta-
bolic pathways, a weighted gene network approach using WGCNA17, that is typically used for gene co-expression 
analyses, was adapted and implemented for metabolomics data. A signed weighted metabolite network was con-
structed following the WGCNA pipeline, which identifies modules of functionally related metabolites, summa-
rizes the module based on module eigengene - ME, and relates the MEs with the trait of interest17. We constructed 
the networks separately for both the breeds at two time points to unravel the correlated metabolites with the trait 
of interest (FE, EDG, TDG, DG, and RFI). Next, we selected the significantly associated modules (p ≤ 0.1, and 
correlation ≥0.2) that were labeled by color for further analysis. The expression of any FE trait, such as RFI, is 
dependent on the stage of maturity while for other traits, this correlation is low22,23. However, in our study, we 
observed low to medium correlation for all the traits with respect to the metabolites.

In Duroc (TP1), 144, 131, 335, and 81 metabolites were clustered, respectively, in MEblue, MEbrown, 
MEturquoise, and MEyellow (Fig. 4A- upper panel). Among the modules, MEbrown was significantly associated 
with FE and RFI, and MEturquoise with RFI (Fig. 4A – lower panel). From the TP2, 190, 104, 316, and 92 metab-
olites were clustered in MEblue, MEbrown, MEturquoise, and MEyellow, respectively (Fig. 4B – upper panel). 
From these modules, significant associations were identified for MEblue (FE, TDG, and RFI), and MEturquoise 
(TDG) (Fig. 4B – lower panel). In Landrace (TP1), 152 metabolites were clustered in MEblue, 151 in MEbrown, 
260 in MEturquoise while 121 in MEyellow (Fig. 4C – upper panel). MEbrown was significantly associated with 
RFI, while MEturquoise and MEyellow with DG at TP1 in Landrace (Fig. 4C – lower panel). Regarding TP2, 253 
metabolites were clustered in MEblue, 142 with MEbrown and 294 with MEturquoise (Fig. 4D – upper panel). 
Nonetheless, only MEturquoise was associated with EDG and DG (Fig. 4D – lower panel).

The annotated metabolites with p ≤ 0.05 (Table 1, Supplementary Table S2) and those clustered into the asso-
ciated modules (Fig. 4, Supplementary Table S3) were subjected to pathway over-representation analysis (Table 2). 
As the same metabolite in a module can be related to more than one trait, the unique metabolites were screened 
by taking all the significant modules for all the traits in each breed at each time point (Table 2). Then, we also 
screened the metabolites for commonality in each breed between the two time points. In Duroc, only a single 

Figure 1. PCA visualization of the two first principal components, colored by breed and sampling. The first 
component separates the most divergent group – Duroc 2 and Landrace 1. The second component separates 
Duroc 1 and Landrace 2, the second most divergent group.
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metabolite out of 102 was found to be common between the two time points (TP1 and TP2). In Landrace, 36 
metabolites were found common in two time points, while 66 metabolites were different in TP1 and TP2.

Pathway over-representation analysis. Exploiting the fact that metabolites are linked through biochem-
ical reactions and thus are partaking in many pathways, we carried out a pathway over-representation analysis 
based on the integrated molecular level pathway analysis (IMPaLA) software24. To reveal the differences at the 
pathway level, we analyzed the unique metabolites in two different ways. First, by comparing the difference in 
the metabolites at two time points within the breeds. Second, by comparing the metabolite differences among 
the breeds (Duroc vs. Landrace), taking all the metabolites together irrespective of the time points in each breed 
(Table 2, Supplementary Table S3). The unique metabolites from two time points were screened, supporting the 
fact that the FI or FE is affecting the pathways to some extent, thus pointing out the different pathways in TP1 and 
TP2. The significant over-represented pathways were screened against 7 databases (Kyoto Encyclopedia of Genes 
and Genomes - KEGG, Edinburgh Human Metabolic Network - EHMN, Reactome, Integrating Network Objects 
with Hierarchies - INOH, HumanCyc, Biocarta, Pathway Interaction Database - PID) and selected (p ≤ 0.05) 
pathways were used for biological interpretations.

Figure 2. Heatmap constructed using the significant metabolites with RFI in Duroc (time point 1 and 2). The 
x-axis represents the sample ID at time point 1 and 2 represented as ID_1 and ID_2, respectively; the y-axis 
represents the metabolites (names of the corresponding metabolites are given in Supplementary Table S5.
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In Duroc, 32 metabolites were involved in 49 pathways in TP1 as compared to 35 pathways obtained by 70 
unique metabolites in TP2 (Supplementary Table S4). Some of the underlying pathways in TP1 were the metab-
olism of glycerophospholipid, D-arginine and D-ornithine and choline; mTOR, Arf6, ErbB1, and Arf1 signaling 
pathways. However, in TP2, synthesis and degradation (Lysine, Valine-Leucine-Isoleucine, pyrimidine deoxyrib-
onucleosides, methionine, glycine betaine, guanosine), bile salts and organic anion SLC transporter and pentose 
phosphate pathway were identified. Vitamin B6 metabolism was common between TP1 and TP2. Similarly, in 
Landrace, 36 unique metabolites from TP1 were involved with 20 significantly (p ≤ 0.05) over-represented path-
ways, while 37 metabolites were involved with 15 significantly over-represented pathways in TP2. Pathways like 
digestion of dietary lipid, synthesis of bile salts, valine degradation, valine-leucine-isoleucine biosynthesis were 
found in TP1. In TP2, the pathways found were degradation of pyrimidine deoxyribonucleosides, methionine, 
glycine betaine, cysteine biosynthesis, and vitamin B6 metabolism. However, the pathways involved were com-
pletely different in TP1 and TP2 in Landrace. This supports the fact that there is an observable difference in the 
biological level as shown by the difference in metabolites at two time points in both the breeds.

The complete breed analysis, combining both the time points, was also carried out to evaluate the differences 
in the metabolites and the biological pathways involved, that are specific to the breed. 101 unique metabolites were 

Figure 3. Heatmap constructed using the significant metabolites with RFI in Landrace (time point 1 and 2). 
The x-axis represents the sample ID at time point 1 and 2 represented as ID_1 and ID_2, respectively; the y-axis 
represents the metabolites (names of the corresponding metabolites are given in Supplementary Table S5.
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subjected to over-representation pathway analysis leading to their involvement with 50 pathways over-represented 
at combined time points in Duroc (Supplementary Table S4). Combining both the time points in Landrace, 66 
unique metabolites pointed to 10 pathways that were significantly over-represented (p ≤ 0.05) (Supplementary 
Table S4). Biological oxidation, Histidine-lysine-phenylalanine-tyrosine-proline-tryptophan catabolism, and 
methionine salvage were involved with both Duroc and Landrace. All the other pathways were specific to each 
breed. The pathway differences between the breeds are also given in Supplementary Table S4.

Cluster analysis was carried out for the metabolites significant for RFI in a combined time point (Duroc – 36; 
Landrace – 29) (Table 1). The differences in the metabolite clustering for two time points in each breed is also 
observed in the heatmap (Figs. 2 and 3). Pathway analysis of the metabolites clustering together in the heatmaps 
is given in Supplementary Table S5. In Duroc, 4 significant clusters of 36 metabolites: Cluster 1 (metabo 3–14), 
cluster 2 (metabo – 16–13), cluster 3 (metabo 6–25), and cluster 4 (metabo 20–36) can be differentiated (Fig. 2). 
In Landrace, 4 significant clusters of 29 metabolites: cluster 1 (metabo 1 and 3), cluster 2 (metabo – 14–6), cluster 
3 (metabo 13–21), and cluster 4 (metabo 19–17) can be differentiated (Fig. 3). The x-axis represented sample 
clustering of TP1 and TP2 in both the breeds. The annotation of the metabolites as given in the heatmap (y-axis) 
and their corresponding pathways are given in Supplementary Table S5.

Figure 4. Clustering dendrogram and module-trait correlation plots. The upper panel of each plot (A–D) 
represents metabolite-clustering dendrogram obtained by hierarchical clustering of TOM-based dissimilarity 
with the corresponding module colors indicated by the color row. Each colored row represents color-coded 
module that contains a group of highly connected metabolites. The lower panel of each plot (a–d) represents 
the module trait correlation where the x-axis represents feed efficiency trait, and the y-axis represents the 
modules. Plots (A) and (B) represents Duroc at time points one and two, respectively, while plots (C) and (D) 
represent Landrace at time points one and two. The color-coding in the module-trait correlation plots is based 
on Spearman’s correlation (p-values in parenthesis). Positive and negative correlations are shown in red and 
blue colors, respectively.

https://doi.org/10.1038/s41598-019-57182-4


7SCIENTIFIC REPORTS |          (2020) 10:255  | https://doi.org/10.1038/s41598-019-57182-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Network visualization. To visualize and interpret metabolomics data in the context of human metabolic 
networks, to trace connections between metabolites and genes, and to visualize compound networks, the unique 
metabolites were cross-referenced with the KEGG database. Only metabolites with specific KEGG IDs were con-
sidered for compound-gene network and pathway analysis. The hub metabolites were identified by taking the 
highly connected metabolites that were associated with more than one gene in the compound gene network 
(Supplementary Table S6). Hubs are the nodes that are more connected than the average or typical nodes, and 
consequently are more likely to play crucial biological role.

In Duroc, 63 genes in TP1 pointing to 6 hub metabolites were identified, while in TP2, 79 genes pointing to 14 
hub metabolites were identified (Supplementary Table S6). The hub metabolites were specific for each time point. 
In Landrace, 87 genes underlying 9 hub metabolites in TP1, while 40 genes were pointing to 7 hub metabolites 
in TP2. 3-Methyl-2-oxobutanoic acid was common hub metabolite in Landrace TP1 and TP2 (Supplementary 
Table S6). S-(2,2-Dichloro-1-hydroxy)ethyl glutathione was a common hub metabolite identified in Duroc 
and Landrace TP1, while 3-Methyl-2-oxobutanoic acid and cholesterol sulfate was found to be a common hub 
between Duroc and Landrace TP2.

A combined time point analysis for the breed identified 20 metabolites for Duroc and 15 for Landrace. 
Choline, acetoacetate, (R)-Lactate, D-Erythrose 4-phosphate, 3,4-Dihydroxy-L-phenylalanine, Xanthine, 
Deoxyuridine, phenylacetaldehyde, pyridoxine phosphate, 4-Pyridoxate, Taurolithocholate sulfate, 5-Guanidino-
2-oxopentanoate were specific for Duroc while L-Methionine, D-Glutamate, Thiamine, Deoxycytidine, 
Chenodeoxycholate were specific for Landrace.

Compound-gene network for both the breeds (Fig. 5) along with the putative genes (Supplementary Table S6) 
underlying the pathways were constructed. In Duroc, 32 metabolites were cross-referenced with the KEGG data-
base thereby identifying 63 genes involved in 5 pathways in TP1 while 70 metabolites were related to 79 genes 
involved with 11 pathways in TP2. Glycerophospholipid and xenobiotics metabolism was specific pathways for 
TP1 after compound-gene cross-referencing while metabolism of butanoate, C21-steroid hormone biosynthesis, 
lysine, phosphatidylinositol phosphate, purine, pyrimidine pathways were specific at TP2. Metabolism of vitamin 
B6, tyrosine and Glycine-Serine-alanine-threonine was involved in both the time points (Fig. 5). In Landrace, 
36 metabolites were related to 87 genes involved in 9 pathways in TP1 while 37 metabolites related to 40 genes 
involved with 5 pathways. Biosynthesis of androgen and estrogen, bile acid, C-21 steroid hormone. Metabolism 
of glycerophospholipids, methionine-cysteine, vitamin B1 and xenobiotics were specific for TP1 while metab-
olism of lysine, pyrimidine, vitamin B6 were specific for TP2. Glycine-Serine-alanine-threonine metabolism 
and valine-leucine-isoleucine degradation were common pathways between TP1 and TP2 in Landrace after 
cross-referencing of the metabolites. Interestingly, C21-steroid hormone biosynthesis and metabolism, glycero-
phospholipid and xenobiotics metabolism were identified only in TP1 in both the breeds and not present in TP2 
while lysine, pyrimidine and vitamin B6 metabolism was identified only in TP2 in both Duroc and Landrace 
(Fig. 5).

Discussion
Improving FE greatly reduces the feed expense and increases the profit for the producers. However, it difficult to 
measure as it involves the accurate recording of dry matter intake and other features25. Therefore, any reliable pre-
dictors of FE that can be easily measured and used in selecting animals would be helpful for pig producers. There 
are many genetic/genomic studies on pig FE in Danish pig breeds9,26. However, this is the first study to relate FE 
with metabolomics to identify metabolomic markers or signatures in Danish pigs.

In our study, using a high throughput UPLC/MS system, we analyzed metabolite concentration in blood 
collected before and after the FI testing period to search for a metabolomics signature with respect to the FE and 
other related traits in Danish production pigs at two time points. A clear clustering of sampling time and breed, 

Breed (Time point)*
Number of 
metabolites** Module Trait

Unique 
metabolites

Duroc (1)
11 Brown FE

329 Brown RFI
21 Turquoise RFI

Duroc (2)

13 Blue FE

70
8 Blue TDG
8 Blue RFI
55 Turquoise TDG

Landrace (1) 8 Brown RFI
3622 Turquoise DG

6 Yellow DG
Landrace (2) 19 Turquoise EDG

37
36 Turquoise DG

Table 2. Significant metabolites for FE traits used for pathway analysis. *Numbers (1, 2) represents time point 1 
and 2 respectively. **The metabolites were identified based on the overlapping of the linear model and network 
association modules. FE = Feed efficiency; EDG = Early daily gain; TDG = Testing daily gain; DG = Daily gain; 
RFI = Residual feed intake
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among Duroc (TP2) and Landrace (TP1) (component 1) and Duroc (TP1) and Landrace (TP2) (component 2) 
gathered the samples according to their breeds and time points in four different groups, and supports the hypoth-
esis of change in the metabolite profiles of the samples according to the breeds and time points. This also shows 
that the metabolite concentrations are not random and do have meaningful biological information.

We carried out an exploratory analysis by applying untargeted metabolomics, linear and network analyses, 
and pathway over-representation to unravel the effect of metabolites on FE phenotypes. A stronger association 
of metabolites with FE was expected at TP2; it is based on data recorded at the second sampling point. We do 
however believe that any metabolites found in TP1 would be more valuable for selection as this would allow for 
early screening of the pigs, leading to less wasted resources. As we also do find that the metabolites have a linear 
association between the time points, we do believe there is a potential for early screening using blood metabo-
lites. Although the relation between the two time points and the lack of significant metabolites at TP1 may seem 
contradictory, it can likely be explained by several factors. The metabolite concentration in TP1 do not explain all 
the variation in TP2. If we combine this with the fact that FE is a multifaceted phenotype, which is not strongly 
controlled by a single factor, and in general is a somewhat subtle phenotype, it is easy to imagine that despite the 
connection between TP1 and TP2 we do not find the same results in both time points. Thus more data, and pos-
sibly a multiple-metabolite model may be needed for successful application of early screening.

From the KS test, we can observe that for most traits, the p-values are not uniformly distributed, with the high-
est p-value being 0.19. This means that if we apply FDR correction, all traits seem to have an overall relation to 
our traits, meaning even the borderline significant results are likely to be showing an underlying true effect. This 
establishes that metabolite profiles are a relevant source of information for our phenotypes of interest. Beyond the 
relevance of the metabolites for our phenotypes, we also established that for a large proportion of metabolites, the 
concentrations are linearly related over time. This shows us that despite variation over time, metabolites profiles 
show a level of temporal stability and predictability in our data.

From the heatmap clustering analysis of the top metabolites based on p-values in Duroc and Landrace sepa-
rately for RFI, we observed that the samples clustered at two time points in both the breeds. A clear demarcation 
is observed while clustering the metabolites. In Duroc, the clusters identified were involved with the metabolism 
of phenylalanine, vitamin B6, arginine and ornithine, digestion of dietary lipids. Regarding Landrace, the clusters 
identified were found to be involved with biosynthesis of arginine-proline metabolism, bile secretion, and lysine 
degradation.

We applied a well-known gene co-expression network approach – WGCNA17 to analyze the metabolomics data 
in this study. From the network analysis, we found several modules associated with FE, TDG, and RFI in both the 
breeds at different time points, pointing towards the common pathways influencing these traits. The change in the 
metabolites found at different time points supports the fact that there are changes in metabolomic levels related to 

Figure 5. Compound-gene network for (a) Duroc (b) Landrace. The network is constructed using 101 
metabolites underlying 17 different pathways in Duroc, while 28 metabolites are underlying 6 different 
pathways in Landrace.
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FE, TDG, and RFI between Duroc and Landrace breeds. We also constructed a compound-gene network for the 
significant unique metabolites in Duroc and Landrace to identify the pathways after cross-referencing with the 
KEGG pathways specific for humans and identifying genes underlying these pathways.

Based on the over-representation pathway analysis, we identified some key pathways in two time points in 
each breed (Supplementary Table S4). We also created a compound-gene network by applying Metscape 3.1.3. 
The compound-gene network in Duroc pointed towards 13 specific pathways underlying metabolism (butanoate, 
glycerophospholipid, glycine-serine-alanine-threonine, lysine, purine, and pyrimidine, vitamin B6, tyrosine, 
C21-steroid hormone, phosphatidylinositol phosphate, and xenobiotics), valine-leucine-isoleucine degradation 
and pentose phosphate pathway (Fig. 5a). In Landrace, 12 pathways were identified with some of them overlap-
ping with Duroc, while androgen and estrogen biosynthesis, bile acid biosynthesis, methionine, and cysteine 
metabolism and Vitamin B1 metabolism specific to Landrace (Fig. 5b).

Among all the key metabolites identified in Duroc TP1, we identified choline (C00114), which is involved 
in glycerophospholipid metabolism and glycine-serine-alanine-threonine metabolism. Choline was found to be 
a hub metabolite involved with both FE and RFI in Duroc TP1 (Fig. 5, Supplementary Table S3). Choline is an 
essential nutrient for normal animal growth and performance and has been used as a supplement in the animal 
diets. Being an essential component of the cell wall and fat metabolism, choline is found to enhance FE and 
weight gain in ruminants27. Furthermore, Choline is a methyl donor taking part in DNA methylation, and is a 
vital process control the correct expression of genes thus ensuring proper cell development and growth28.

The hub metabolite pyridoxamine (C00534), was found to be significant in Duroc TP1 (RFI) and Landrace 
TP2 (EDG, DG), which was identified for Vitamin B6 metabolism. Pyridoxamine phosphate plays an essential 
role in the interaction of amino acid, carbohydrate, fatty acid metabolism, and TCA cycle. Studies reported the 
relationship of B6 in tryptophan metabolism of weanling piglets but were unable to detect an effect on the oxi-
dation of the tryptophan pathway and suggested that B6 may stimulate another pathway in tryptophan metab-
olism29. Metabolic shifts in lipid and carbohydrate utilization in high FE animals were reported14. They also 
reported reduced hepatic usage of fatty acid in high FE animals with a molecular alteration in lipid metabolism. 
A complementary analysis pointed out increased circulating triglycerides accompanied by a lower concentration 
of saturated and polyunsaturated fatty acids in the liver of high FE pigs14.

We identified acetoacetate (C00164) to be the most significant for pathways underlying metabolism of 
butanoate, tyrosine, and valine-leucine-isoleucine degradation in Duroc TP2. Since butanoate is a metabolite 
of gut flora and involved with energy metabolism, butanoate metabolism may be activated under the condi-
tions of cellular stress30. Oxidative stress reprograms lipid metabolism increasing the mitochondrial fatty acid 
oxidation31. Butanoate metabolism was also found to be enriched for differentially expressed genes in Nelore 
cattle muscle for RFI32. In our study, we found acetoacetate as the hub metabolite responsible for butanoate 
metabolism related to TDG in Duroc TP2 (Supplementary Table S3). However, in the study reported by Akbar33, 
the subcutaneous administration of acetoacetate did not affect the FI. Acetoacetate was also found responsi-
ble for tyrosine metabolism as it affects FAH, an enzyme that catalyzes the last step of tyrosine metabolism. 
Metatranscriptomic studies revealed the tyrosine pathway to be differentially expressed in rumen microbiome 
of beef cattle34. Acetoacetate was also found as the hub (Fig. 5) for valine, leucine, and isoleucine pathway. We 
identified 3-methyl-2-oxobutanoic acid specific for this pathway also found to be associated with Duroc TP2. The 
three amino acids in the pathway are essential and act as a building block for tissue protein synthesis35.

Deoxyuridine (C00526) and xanthine (C00385) were found to be involved with purine-pyrimidine metabo-
lism in Duroc TP2. Deoxyuridine was associated with FE, while xanthine was associated with TDG in Duroc TP2 
(Supplementary Table S3). Both the metabolites are involved in pyrimidine metabolism and are part of the cecal 
content of digestive segments involved with direct or indirect synthesis or utilization of compounds by the gut 
microbiota36. These metabolites were also reported to be affecting the digestive efficiency in chickens37. Previous 
studies have shown an increase in the concentration of xanthine by increased FI38,39. The degradation of rumen 
fluid into xanthine, hypoxanthine, and uracil by the action of bacterial nucleic acids (DNA, RNA) was reported 
previously40. The decrease in the rumen pH in dairy cows fed with high-grain diets changes the microbiota com-
position due to their intolerance towards low pH41.

We identified cholesterol sulfate (C18043) associated with FE, TDG, and RFI in Duroc TP2, whereas with RFI 
in Landrace TP1 (Supplementary Table S3). The relationship among FI behavior, cholesterol, and triglyceride 
plasma levels in pigs was reported by Rauw et al.42, wherein a strong co-relation between FI and cholesterol levels 
was established. However, these authors reported a weak correlation between RFI and cholesterol levels that were 
completely insignificant after correcting for the FC. The cholesterol pathways were also found to be consistent 
with the study involved in the regulation of FE in cattle (Holstein and Jersey) as reported by Salleh et al.43.

Pathways such as lysine metabolism are affected by the metabolite 2-Aminoadipate (C00956) and were related 
to TDG in Duroc TP2, EDG and DG in Landrace TP2, respectively (Supplementary Table S3). Lysine is a limiting 
amino acid, and its deficiency impairs the animal’s immunity and growth performance44. Yin et al.45 suggested 
that the dietary supplementation with lysine influences intestinal absorption and metabolism of amino acids. 
Lysine restriction inhibits intestinal lysine transport and promotes FI associated with gut microbiome in piglets45.

Functional annotation revealed some pathways involved with the metabolism and digestive gland secre-
tion during feeding over-represented among the unique hubs and their role in FE, EDG, TDG, DG, and RFI 
in pigs. Based on the potential role of these metabolites in the metabolism of carbohydrate (butanoate), lipid 
(steroid, glycerophospholipid, pentose phosphate pathway, bile acid), amino acid (Gly-Ser-Ala-Thr, Lysine, 
Methionine-cysteine, tryptophan, tyrosine, valine-leucine-isoleucine), nucleotide metabolism (purine, pyrim-
idine), metabolism of cofactors and vitamins (B3, B6), and metabolism of xenobiotics, their involvement in the 
feeding behavior and FE traits are conceivable.

The genes identified from the compound-gene network were checked against the previously identified QTLs 
obtained from Animal Genome PigQTL database, where all previous research on QTLs is curated. Among the 198 
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genes identified for both Duroc and Landrace from both the time points, 9 genes were previously reported as can-
didate genes in the QTL database with varied traits (Supplementary Table S6). NT5E associated to Deoxycytidine 
in Landrace TP2 was identified as a candidate gene for RFI in the QTL database46. HSD17B4, which was asso-
ciated to 3,4-Dihydroxy-L-phenylalanine in Duroc TP1, was identified as a candidate gene for carcass weight, 
backfat at tenth rib, and drip loss in Berkshire pigs47. Previous studies show the relation of FE with pork quality. 
Some studies reported that animals with low RFI have less back fat48–50, less water holding capacity48 and impaired 
sensory quality50. However, in some other studies, no difference was observed in the pork quality from low RFI 
pigs and controls with respect to drip loss, but a correlation between RFI and sensory traits related to reduced 
intramuscular lipid was observed51. A candidate gene, MAOA, associated to phenylacetaldehyde, was identified 
in our study that has been reported previously for intramuscular fat, ADG, and loin muscle52. Previous studies in 
Duroc reported high genetic variability due to moderate to high heritabilities for RFI, growth and carcass traits. 
An increase in the loin eye area was reported with decreased RFI, backfat and intramuscular fat content in Duroc 
pigs53. NUDT3 was related to thiamin in Landrace TP1 and PLD2 related to choline in Duroc TP1 in our study 
was also found to be a candidate gene for loin muscle area and loin muscle depth in pigs54,55. The metabolites and 
the genes identified are consistent with FE related traits. Further studies are warranted to evaluate the repeatabil-
ity of our results in other pig population.

Conclusions
Our integrated approach using data annotation, linear model association, weighted metabolite network analysis, 
and pathway over-representation analysis indicated potential targets for biological processes related to FE. The 
significant metabolites affecting the pathways points out the role of the metabolites concerning to FE and related 
traits. Overall, we observe several trends in the results. We are able to identify relevant biological relation between 
our traits and metabolite profiles, but also differences in breed and time points. In contrast, we also see that there 
is some linear predictability in the metabolites between time points. As the pigs are entering and undergoing a 
very rapid growth and maturation rate between samplings, it is natural to expect that the underlying metabolite 
profiles and networks are changing, despite elements of stability in metabolite profiles. This means that strategies 
for applying metabolite information into a real life farming appear to be complex and require good understanding 
of the relations and changes in metabolite profiles and time, and the identification of not only key metabolites, 
but also key time points. Validation of these results in a cohort with more animals and time points would help 
to establish a framework for future FE prediction using metabolomics biomarker profiles that could be practical 
to use in large populations other than genomic profiling. More data would also make it possible to model the 
complex relations in metabolite profiles over time more accurately. Further understanding of the mechanisms 
driving these trends will result in improved nutrient utilization, reduction in production costs, and increased FE 
in pigs. To best of our knowledge, this is the first study to report metabolomics profiles related to FE and related 
traits in Danish pigs.

Methods
Ethical approval. The blood sampling and experiment were approved and carried out in accordance with 
the Ministry of Environment and Food of Denmark, Animal Experiments Inspectorate under the license num-
ber (tilladelsesnummer) 2016-15-0201-01123, and C-permit granted to the principal investigator/senior author 
(HNK).

Study design and phenotypes. The pigs used in this experiment were housed at the pig testing station 
“Bøgildgård” operated by SEGES within Landbrug and Fødevarer (L&F: Danish Agriculture and Food Council). 
Pigs were ad libitum fed and free water supply. The authors of this study were not responsible for animal hus-
bandry, diet, and care as the testing station is a facility within the Danish breeding program, run by SEGES.

Blood samples were collected at a boar testing station Bøgildgård, owned by SEGES. The pigs were purebred 
uncastrated males from Danbred Duroc (n = 59) and Danbred Landrace breeds (n = 50), amounting to a total of 
109 pigs. The initial bodyweight of the pigs before the testing period was approximately 7 kg, followed by a 5-week 
acclimatization phase. The pig diet consisted of a feed mixture with the main ingredients being: 39% barley, 27% 
wheat, 14% soybean meal and 6% oats. For the phenotypic traits, the weight of FC in kg and FE for each pig in the 
testing phase was measured beginning with an initial weight of around 28 kg for each pig. Bodyweight measured 
at two time points, the beginning and end of the test, were available from standard test procedure of the testing 
station and their difference was referred to as delta weight (DW). FE was calculated as the ratio between DW and 
FC. The testing phase ranged from 41 to 70 days based on the viability of each pig. The DG was calculated for 
three time phases – birth to testing (EDG), testing start to end (TDG), and birth to testing end (DG). RFI was 
computed as the difference between the observed daily feed intake (DFI) and the predicted feed intake (pDFI)56. 
All pigs consumed the same feed until the test end.

For the study of metabolites, approximately 5 mL of blood was collected from jugular venipuncture from each 
pig into tubes containing ethylenediaminetetraacetic acid (EDTA) and immediately placed on ice. Samples were 
collected at two time points, one at the start of this test phase (approximately 28 kg weight) and the second after 
45 days referred to as TP1 and TP2 in the further study. The pigs were sampled at the same time of the day and 
same day of the week to insure the most comparable sampling. Pigs were in non-fasted state. For the separation 
of the blood plasma, samples were centrifuged at 3000 g for 10 minutes at 4 °C, and plasma was stored at −80 °C.

Non-targeted metabolomics analysis. The plasma samples extracted from each pig were subjected to 
metabolomics analysis. The samples were processed by MS-Omics (http://www.msomics.com/; Denmark), and 
the analysis was carried out using a UPLC system (UPLC Acquity, Waters) coupled with time of flight mass 
spectrometer (Xevo G2 Tof Waters). An electrospray ionization interface was used as an ionization source. The 
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analysis was performed in negative and positive ionization mode. The UPLC was performed using a slightly 
modified version of the protocol described by Catalin et al. (UPLC/MS Monitoring of Water-Soluble Vitamin Bs 
in Cell Culture Media in Minutes, Water Application note 2011, 720004042en).

Raw files were processed using MZmine 257. The mass detection was ascertained, keeping the noise level at 
1E2 (negative mode) and 1E3 (positive mode). The chromatogram building was achieved using a minimum 
time of 0.05 min, a minimum height of 1E3 (positive mode) and 4E2 (negative mode), and m/z tolerance of 0.01 
(5ppm). The local minimum search deconvolution algorithm was used with a baseline cutoff, the minimum peak 
height of 2E3 (positive mode) and 5E2 (negative mode), and peak duration range of 0.04–5.0 min (positive mode) 
and 0.05–5.0 min (negative mode). Chromatograms were deisotoped with m/z tolerance of 0.01 (or 5 ppm) and 
an RT tolerance of 0.2 minutes for positive and 0.5 minutes for negative modes, respectively. Peak alignment was 
performed with (m/z tolerance at 0.01 (or 5 ppm). The peak list was eventually gap-filled with the peak finder 
module (intensity tolerance at 50% and m/z tolerance at 0.01 (or 5 ppm).

The identification of the metabolites was performed using both peak retention times (compared against 
authentic standards included in the analytical sequence) and accurate mass (with an acceptable deviation of 
0.005 Da). As a standard quality control, samples with blank >3 were not included. The relative standard devi-
ation between QC samples was kept less than 60, the correlation between the dilution of QC and response was 
>0.8.

The data were aligned and normalized using total ion intensity. The metabolites were identified by compar-
ison with the online Human Metabolome Database (HMDB)58 using exact m/z values and retention time. The 
metabolites that did not correspond to HMDB were left unannotated. These compounds were annotated based on 
a library search of the masses in the HMDB with a mass uncertainty of 0.005 Da or 5 ppm. The search in HMDB 
assumes that all ions originated from the [M + H]+ or [M + Na]+ (in positive ionization) or [M − H]− (in negative 
ionization) ions.

Metabolite-trait association analyses. The metabolite data were log-normalized before fitting the linear 
model. For each group of metabolites, only those with relative standard deviation >0.15 were used, based on the 
raw counts. The log-normalized metabolite concentration (mijk) was adjusted for fixed and random effects as 
follows.

ε= + + +m B S P (1)ijk i j k ijk

where,
mijk: is the relative concentration of each metabolite;
Bi: is the fixed effect for the breed;
Sj: is the batch effect;
Pk: is the random effect from the pen;
εijk: is the random residual effect associated with each observation.
For each adjusted metabolite, denoted as nm ,ijk (where, = − + +n ˆ ˆ ˆm m B S P(ijk ijk i j k) from Eq. 1), the linear 

association with the pig phenotypes was estimated based on the following model:

= +ny m Aij ijk j

Where,
yij: is the phenotype (FE, EDG, TDG, DG, RFI) for each animal;
nmijk: are the adjusted metabolites based on the Eq. (1);
Aj: is the covariate for animal’s sampling age in days;
We did not include the sampling age with our other fixed and random effects when correcting our metabolites, 

as the sampling age is correlated with our phenotypes. This is because the slower-growing pigs have a higher sam-
pling age as it takes long time for them to reach the testing phase. Adjusting for sampling age a priori would thus 
create biases59. Thus, we included sampling age as a covariate in the final models associating corrected metabolites 
with our phenotypes.

Many models were used, so instead of looking into the specific results of each metabolite in each 
model, we initially tested the significance of the model based on all metabolites. This was done by using the 
Kolmogorov-Smirnov test to compare the resulting p-value distribution with the uniform distribution for the 
parameter of interest in each batch. Cluster analysis and heatmap of significantly different metabolites were gen-
erated using the ‘pheatmap’ package in R (v1.0.12).

Metabolite network analysis. Network analysis was performed using Weighted Gene Co-expression 
Network Analysis (WGCNA) R package version 1.6617. The WGCNA methods have been successfully applied to 
gene expression data from microarrays60 and RNA sequencing platforms in animal sciences18. Recently this meth-
odology was applied on genome-wide genotype data as well61. Hereby, we extended this methodology to build 
networks using metabolomics data. The methodology, in summary, involved the Spearman correlation between 
all adjusted metabolite concentrations followed by the transformation of the correlation matrix into an adjacency 
matrix (AM) by fitting a power coefficient beta (β). The β was chosen by testing the coefficient between 12 and 
22 and selecting the one that maximizes the scale-free topology based on the scale-free R2 value >0.8. From the 
scaled correlation, the Topological Overlap Measure (TOM), representing the connection between metabolites 
was calculated. Based on the TOM and applying the dynamicTreeCut algorithm, modules of connected metabo-
lites were generated. In each module, the eigengene values of the module metabolites were calculated.

A linear model was fitted among the eigengene values of metabolite modules and the phenotypes to assess the 
module-phenotype relationship. Further, we intersected the metabolites identified based on the linear association 
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with those from the modules significantly associated with phenotypes. Metabolites with p-values ≤ 0.05 and those 
clustered into the modules with a phenotypic correlation ≥0.2 and p ≤ 0.1 were selected for subsequent analysis.

Pathway analysis and network visualization. Over-representation analysis was performed using 
IMPaLA24 to identify metabolites underlying pathways meaningful to FE related-traits. IMPaLA takes into 
account the pathways from 11 public databases, including Reactome62 and KEGG pathway63. Over-represented 
biological pathways were taken as significant with p ≤ 0.05.

The visualization of metabolomic data was done in the context of human metabolic networks using Metscape 
v 3.1.364, a Cytoscape plugin. Based on that, we identified the connections between metabolites and the putative 
genes underlying the pathways in a compound-gene network approach. The key metabolites that were found to 
be involved in the main pathways were referred to as hub metabolites. The hub metabolites (compound IDs) from 
each significant pathway were selected and visualized using Cytoscape. A schematic representation of the meth-
odology is given in Supplementary Fig. S3.

Data availability
The datasets generated and/or analyzed during the current study are publicly available upon acceptance of the 
paper at Metabolights database https://www.ebi.ac.uk/metabolights/MTBLS1384 with accession ID: MTBLS1384. 
https://doi.org/10.1093/nar/gks1004. PubMed PMID: 2310955.
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Abstract 11 

Improvement of feed efficiency (FE) is key for sustainability and cost reduction in pig 12 
production. Our aim was to characterize the muscle transcriptomic profiles in Danbred 13 
Duroc (Duroc) and Danbred Landrace (Landrace), in relation to FE for identifying 14 
potential biomarkers. RNA-seq data was analyzed employing differential gene expression 15 
methods, gene-gene interaction and network analysis, including pathway and functional 16 
analysis. We compared the results with genome regulation in human exercise data.  In the 17 
differential expression analysis, 13 genes were differentially expressed, including: 18 
MRPS11, MTRF1, TRIM63, MGAT4A, KLH30. Based on a novel gene selection method, 19 
the divergent count, we performed pathway enrichment analysis. We found 5 significantly 20 
enriched pathways related to feed conversion ratio (FCR). These pathways were mainly 21 
mitochondrial, and summarized in the mitochondrial translation elongation (MTR) 22 
pathway. In the gene interaction analysis, highlights include the mitochondrial genes: 23 
PPIF, MRPL35, NDUFS4and the fat metabolism and obesity genes:  AACS, SMPDL3B, 24 
CTNNBL1, NDUFS4 and LIMD2. In the network analysis, we identified two modules 25 
significantly correlated with FCR. Pathway enrichment of modules identified MTR, 26 
electron transport chain and DNA repair as enriched pathways. In the network analysis, 27 
the mitochondrial gene group NDUF was a key hub group, showing potential as 28 
biomarkers. Comparing with human transcriptomic exercise studies, genes related to 29 
exercise displayed enrichment in our FCR related genes. We conclude that mitochondrial 30 
activity is a driver for FCR in muscle tissue, and mitochondrial genes could be potential 31 
biomarkers for FCR in pigs.  We hypothesize that increased FE mimics processes 32 
triggered in exercised muscle.  33 

 34 

 35 



 
2 

Introduction 36 

In commercial pig production, the cost of feed is the highest individual economic factor (Jing, Hou et 37 

al. 2015, Gilbert, Billon et al. 2017). Furthermore, reduction in feed consumption per unit growth is 38 

beneficial for the environment, which is a key factor in being able to maintain sustainable and 39 

resource efficient production.  In this context, there have been continuous efforts to increase feed 40 

utilization efficiency in pigs through selective breeding. In the Danish Production pig population, 41 

breeding is done at a core central facility where potential breeding sires are tested for FCR through 42 

accurate individual measurements of feed intake and growth. Danish production pigs are crossbreds, 43 

with the maternal line being  Landrace x Danbred Yorkshire, and the paternal line being  Durocs The 44 

Durocs are well-known for being heavily selected for growth and efficiency, while the two other 45 

breeds have had more heavy selection on litter size or piglet survival related traits.  46 

Feed efficiency can be defined in several ways, with the main ones being Residual Feed Intake 47 

RFI(Koch 1963) and FCR. FCR is the ratio between feed consumed and growth, while RFI is based 48 

on the residual between predicted feed intake and actual feed intake given growth. In general, it is 49 

reported that selection for low FCR will result in co- selection for related traits, namely growth rate 50 

and body composition (Nkrumah, Basarab et al. 2007, Gilbert, Billon et al. 2017, Yi, Li et al. 2018). 51 

In contrast, selection for RFI is more directly focused on metabolic efficiency irrespective of daily 52 

gain and growth (Nkrumah, Basarab et al. 2007, Gilbert, Billon et al. 2017, Yi, Li et al. 2018). In 53 

general, RFI and FCR are strongly correlated, with a correlation above 0.7 and both show low to 54 

medium heritability(Do, Strathe et al. 2013). In general, FCR is simpler to calculate, as RFI 55 

calculation is dependent on individual population and production factors (Hoque, Kadowaki et al. 56 

2009, Do, Strathe et al. 2013).  However, in pig production, the side effects of FCR selection and 57 

simplicity are desired traits, thus perhaps explaining why the pig population in Denmark and in 58 

general pig production, FCR has been the main efficiency phenotype used for selection (Gilbert, 59 

Billon et al. 2017). One can also hypothesize that FCR is more easily translatable between 60 

breeds/populations, as it is a simple dimensionless ratio, which has a simple and generally 61 

comparable interpretation.  In contrast, it is more difficult to easily compare RFI values across 62 

different populations or breeds. In regards to the biological and/or genetic background of FCR in 63 

pigs, the results remain somewhat elusive(Ding, Yang et al. 2018), thus inviting for further analysis 64 

on the topic.  65 
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The key tissue in pig production is muscle, as pig carcasses are valued according to lean meat 66 

content.  Skeletal muscle is a key organ in carbohydrate and lipid metabolism and plays a large part 67 

in the storage of energy from feed (Turner, Cooney et al. 2014, Morales, Bucarey et al. 2017), 68 

especially as lean growth has been one of the main goals of pig breeding programs. Increased 69 

efficiency has also been positively associated with various meat quality parameters (Czernichow, 70 

Thomas et al. 2010, Lefaucheur, Lebret et al. 2011, Smith, Gabler et al. 2011, Faure, Lefaucheur et 71 

al. 2013, Horodyska, Oster et al. 2018), showing that improved FE can have multiple positive 72 

outcomes. There are only a few studies analyzing muscle tissue transcriptome pf pigs in a FE 73 

context(Jing, Hou et al. 2015, Vincent, Louveau et al. 2015, Gondret, Vincent et al. 2017, 74 

Horodyska, Wimmers et al. 2018), and thus our knowledge of the muscle transcriptomic background 75 

of FE is somewhat limited. In general, the studies available have relied on small samples sizes, weak 76 

statistical thresholds and categorical division of lines divergently selected for FE. This means that 77 

more studies are still needed to uncover the true underlying transcriptomic background of FE in 78 

muscle tissue. 79 

Here, in our study, we aim to characterize the transcriptomic profiles and link them to FE traits 80 

measured in Duroc and Landrace, purebred pigs, by fitting FE as a continuous trait over a full 81 

spectrum of efficiency, from high to low. Furthermore, the pigs selected for the study all came out of 82 

the potential breeding sire population, with no pigs negatively selected for FE, thus better 83 

representing real world breeding scenarios than using negative FE selection.  We analyzed the muscle 84 

transcriptome based on several layers of statistical-bioinformatics analyses: differential expression 85 

(DE), gene-gene interaction and network analysis, which was followed up by pathway and functional 86 

analysis. The rationale behind the approach was to reveal potential biomarkers that are functionally 87 

important and are predictive of FE in pigs. Dealing with complex yet subtle phenotypes can be a 88 

challenging, as the signal to noise ratio can be high, and it may be impractical or costly to collect 89 

large sample sizes. Therefore, we also suggest a novel method for selecting features based on overall 90 

p-value distributions, the divergent count.  91 

To gain more insight on the molecular and functional background of FE, we also hypothesized, that 92 

the mechanism between differences in the muscle transcriptome of breeds with different efficiency 93 

could be similar to the differences between a rested and an exercised muscle, We adapted a 94 

translational genomics approach to investigate this, comparing human data with our data. 95 

Materials and Methods 96 
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Sampling and Sequencing 97 

In total, 41 purebred male uncastrated pigs where sampled for this study from two breeds, with 13  98 

Danbred Durocand 28  Danbred Landrace pigs. All pigs were raised at a commercial breeding station 99 

at Bøgildgard owned by the pig research Centre of the Danish Agriculture and Food Council (SEGES). 100 

The pigs where raised from ~7kg until ~100kg at the breeding station. During this time, all feed intake 101 

was measured starting at 28kg and for a period of 40-70 days based on the viability of each pig. All 102 

pigs were routinely weighed several times, including at testing start and end for calculation of FCR. 103 

FCR was calculated by dividing the growth in the testing period with the feed consumption.  Residual 104 

Feed Intake (RFI) was also estimated based on the residuals of the following model, from Do et al(Do, 105 

Strathe et al. 2013): 106 

𝐷𝐹𝐼𝑖𝑗 = 𝜇 + 𝐷𝑊𝐺𝑖 + 𝛽𝑗 107 

  Where DFI is daily feed intake and DWG is daily weight gain in the period, and β is the batch effect. 108 

RFI was calculated separately for each breed, and based on data from a larger population (Duroc n=59 109 

and Landrace n=50).  110 

Muscle tissue samples from the psoas major muscle were extracted immediately post slaughter and 111 

preserved in RNAlater (Ambion, Austin, Texas). Sample were kept at -25 C, as per protocol, until 112 

sequencing 113 

Sequencing  114 

Sequencing was done on BGISEQ-500 platform using the PE100 (pair end, 100bp length) with Oligo 115 

dT library prep at BGI Genomics.  116 

 117 

QC, Mapping and Read Quantification 118 

Reads were trimmed and adapters removed using Trimmomatic (Bolger, Lohse et al. 2014) version 119 

0.39 with default setting for paired end reads. The QC on the data was done both pre- and post-120 

trimming using FastQC v0.11.9(. The reads were mapped using STAR aligner(Dobin, Davis et al. 121 

2013) version 2.7.1a using default parameters with a genome index based on sus scrofa version 11.1 122 

and using ensemble annotation sus scrofa 11.1 version 96 for splice site reference. Default 123 
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parameters were used for mapping except for the addition of read quantification during mapping 124 

using the --quantMode GeneCounts setting. All statistic for the reads can be found in supplementary 125 

data 1.   126 

 127 

Differential Expression Analysis 128 

To analyze the relationship between FCR and gene expression, we applied the following overall 129 

model, and implemented it using several different methods: 130 

 𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 +  𝛽1𝑖
(𝐹𝐶𝑅) + 𝛽2𝑗

(𝑅𝐼𝑁) + 𝛽2𝑘
(𝑎𝑔𝑒) +  𝐵𝑅𝑙 + 𝐵𝐴𝑚 +  ϵ         (1) 132 

𝑦 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 133 

𝛽1 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑓𝑒𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 134 

𝛽2 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑅𝐼𝑁 (𝑅𝑁𝐴 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 135 

𝛽3 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑆𝑙𝑎𝑢𝑔𝑡𝑒𝑟 𝐴𝑔𝑒(𝑑𝑎𝑦𝑠) 136 

𝐵𝑅 = 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐵𝑟𝑒𝑒𝑑 137 

𝐵𝐴 = 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐵𝑎𝑡𝑐ℎ 138 

 131 

RNA integrity value (RIN) should be corrected for, as it affects expression, and the most appropriate 139 

way to correct this is to include it in the model(Gallego Romero, Pai et al. 2014). As the samples had 140 

different slaughter days, which affected the collection conditions, we also deemed it necessary to 141 

correct for this via the batch effect. Finally, we correct for Breed and age at slaughter, as these are 142 

biological factors, which can cause differences in expression.  143 

We used the following 3 methods for the DEA: Limma (Ritchie, Phipson et al. 2015), edgeR 144 

(Robinson, McCarthy et al. 2010) and Deseq2(Love, Huber et al. 2014). This was done to increase 145 

the robustness of our analysis, as our phenotype of interest is expected to have a subtle effect on the 146 

transcriptome due to the complex nature of FE. In addition, we also fit the model for each breed 147 

separately using Deseq2, just removing the Breed as a covariate. 148 

Deseq2 149 

We used Deseq2 version 1.22.2. In the Deseq2 analysis, the counts were filtered a priori requiring a 150 

minimum of 5 reads for each sample, resulting in a total of 10765 out of 25880 genes being included 151 
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in the DE analysis in the common breed analysis, and 10687 and 11107 in Landrace and Duroc 152 

respectively. As the overall read counts were very similar across experiments ( see supplementary 153 

data 1), it was deemed sufficient to filter pre normalizing. We then used the default analysis method 154 

based on our specified model.  155 

Limma 156 

We used Limma version 3.38.3. For the Limma analysis, the counts were filtered based on the edgeR 157 

filterByExprfunction and normalized using calcNormFactors from the same package, as suggested in 158 

the limma manual.  This resulted in the inclusion of 11146 genes in the analysis. To fit the model we 159 

used the eBayes  method in conjunction with our specified model. 160 

EdgeR 161 

We used edgeR 3.24.3. We used the same normalization and filtering as in the Limma analysis, thus 162 

including the same number of genes. We used the glmQLfit function and glmQLTest to implement 163 

our model. 164 

While we used to different set sizes in the analysis, this does not affect the results significantly, as the 165 

genes omitted in the Deseq2 analysis are all lowly expressed. Furthermore, in our further analysis we 166 

elected to use the smaller and more conservative Deseq2 set to become our reference set for 167 

selections and analysis. Gene Pathway Analysis 168 

Gene selection 169 

To select a robust set of genes for a gene enrichment analysis when we have non-conservative p-170 

value but only a limited number of genes with a FDR below 0.05, we applied the following strategy: 171 

- Identify the overrepresentation of (low) p-values in comparison to a uniform p-value 172 

distribution in our data. We will call this the divergent count. 173 

- Select the top N genes by p-value, where N is the estimated divergent count 174 

- Among the top N genes, select those that are found in all three methods.  175 

To find the divergent count D, we find the interval with the maximum positive divergence between 176 

our observed empirical p-values and the same number of uniformly distributed p-values. It is 177 

calculated as follows:    178 
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(1) 𝑑𝑖 = (∑ 𝑥𝑖 {
0 𝑓𝑜𝑟 𝑥𝑖 ≥ 𝑖

𝑛

1 𝑓𝑜𝑟 𝑥𝑖 <  𝑖
𝑛

𝑖=1
𝑛 ) − 𝑖 179 

(2) 𝐷 = max {𝑑1, 𝑑2 … 𝑑𝑛} 180 

Where n is the total number of p-values, 𝑥𝑖 is the i’th observed p-value in increasing order. Here i is 181 

both the index for x and the expected number of p-values between 0 and 𝑖
𝑛
  given a uniform 182 

distribution. D is the final divergent count, which is the maximum over all possible values of 𝑑..   183 

GOrilla 184 

To perform gene enrichment in GOrilla (Eden, Lipson et al. 2007, Eden, Navon et al. 2009), we 185 

translated our sus scrofra  ensemble gene IDs into human ensemble gene IDs. The background set of 186 

genes used in GOrilla was the set of genes  from the Deseq2 analysis. We used default settings. 187 

Furthermore, we used the Revigo (Supek, Bosnjak et al. 2011) analysis through GOrilla to generate 188 

summaries of our enrichment analysis, using default settings.  189 

Feed Efficiency measure 190 

In this study, we elected to use weight gain/feed intake as our FCR measure. It fit the data better than 191 

RFI, and FCR is the metric used in the breeding program of our pigs. 192 

Pairwise Gene interaction Analysis 193 

To continue our analysis of the top set of genes identified using the divergent counts in our DE 194 

analysis, we decided to apply a pairwise interaction model. First, we adjust the expression based on 195 

any factors and covariates that may affect expression for each gene. These factors are the same as in 196 

the general DE analysis, giving rise to the following linear model: 197 

 𝑦𝑗𝑘𝑙𝑚 = 𝜇 +  𝛽1𝑗
(𝑅𝐼𝑁) + 𝛽2𝑘

(𝑎𝑔𝑒) +  𝐵𝑅𝑙 + 𝐵𝐴𝑚 + ϵ               (2) 198 

𝑦 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 199 

𝛽1 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑅𝐼𝑁 (𝑅𝑁𝐴 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 200 

𝛽2 = 𝑟 𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑆𝑙𝑎𝑢𝑔𝑡𝑒𝑟 𝐴𝑔𝑒(𝑑𝑎𝑦𝑠) 201 

𝐵𝑅 = 𝐵𝑟𝑒𝑒𝑑 202 

𝐵𝐴 = 𝐵𝑎𝑡𝑐ℎ 203 
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We then centered and scaled the residuals and then run a model for all pairwise gene interaction in 204 

our gene set. The reason we scaled and centered is that this leads to a more flexible and interpretable 205 

model regardless of the type of interaction. The interaction model was as follows: 206 

𝑦𝑖 = 𝜇 +  𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑘 + 𝛽3 (𝑥1𝑗 × 𝑥2𝑘) +  ϵ              (3) 208 

𝑦 = 𝐹𝐶𝑅 𝑣𝑎𝑙𝑢𝑒𝑠 209 

                 𝛽1 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 1 207 

                    𝛽2 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 1 210 

                              𝛽3 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑒𝑛𝑒 1 𝑎𝑛𝑑 𝑔𝑒𝑛𝑒 2 211 

                             𝑥1𝑗 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 1 212 

                        𝑥2𝑘 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 2 213 

                       (𝑥1𝑗 × 𝑥2𝑘) = product of the two residual expression values 214 

The next step was then to identify significant interactions. As the number of interaction in a dataset 215 

grows exponentially to the square of the input space, it is often difficult to detect effects based on 216 

classical multiple testing correction methods such as Bonferroni or FDR. This is especially true when 217 

dealing with complex phenotypes, as we generally do not expect to find individual large effects.  Due 218 

to this, instead of focusing on individual results, for each gene, we calculated the divergent count, to 219 

assess the divergence of each genes distribution of interaction p-values. We then bootstrapped with 220 

replacement samples of 853 p-values from our empirical p-values 105 times, calculating the divergent 221 

count each time, giving us a bootstrapped distribution of divergent counts, to compare with our 222 

empirical distribution 223 

Network analysis 224 

To perform network analysis we used WGCNA(Langfelder and Horvath 2008). First, we filtered the 225 

read counts to only include genes with a minimum of 5 un-normalized reads, as was done for the 226 

Deseq2 analysis. We then created a correlation matrix based on all pairwise correlation in the data. 227 

The correlation matrix was based on un-normalized values as the correlation metric is based of 228 

comparison of the samples with themselves, thus it is not affected by the covariates. We then fit the ß 229 

parameter for the scaling of the network to create a scale free topology(Zhang and Horvath 2005). 230 

The scaled correlation matrix was used as an adjacency matrix that was used to generate the 231 
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Topological Overlap Measures (TOM), which represents the final calculation of the relation between 232 

genes.  233 

The TOM values of the genes where clustered using the dynamicTreeCut function from the 234 

dynamicTreeCut cut package with default setting, resulting in a number of module which are 235 

arbitrarily named based on colors.  236 

The eigenvalue of each module was then calculated based on the normalized read counts and RIN 237 

adjusted count. We did these corrections in this step to remove the technical effects of library size 238 

differences and RIN from the eigenvalues, as we did not want technical effects to affect the 239 

eigenvalues.. The counts were normalized based on the calcNormFactors function from the edgeR 240 

package. After this, the counts were adjusted for RIN by fitting the following linear model: 241 

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = μ + RIN + ϵ for all genes, and extracting the residual expression values. Highly 242 

correlating models where merged using the mergeCloseModules function using a default cut-off. We 243 

then calculated the Pearson correlation between corrected and normalized module eigenvalues and 244 

our traits and covariates. Pathway analysis was performed on the genes of highly correlated modules, 245 

with GOrilla and ReviGO as seen above. Finally, we also identified the top hub genes in relevant 246 

modules. This was done based on calculating the intramodular connectivity using the 247 

intramodularConnectivity function with default settings. We then selected the top hub genes base on 248 

the kWithin measure, which represents the connectivity within modules.  249 

Comparison to human exercise data 250 

To test the hypothesis that differences in the muscle tissue transcriptome of Duroc and Landrace 251 

and/or FCR related genes mimic differences in rested and exercised muscle tissue, we compared our 252 

results with three human data sets(Murton, Billeter et al. 2014, Devarshi, Jones et al. 2018, Popov, 253 

Makhnovskii et al. 2019). For each data set, we performed the following: 254 

1. Select the genes differentially expressed between breeds, based on the edgeR analysis 255 

2. For FCR, use the 853 genes from divergent count set  256 

3. Find the same set of genes in the human data – the breed/FCR matching genes. Genes are 257 

matched using the biomart R package, based on retrieving the external_gene_name of our sus 258 

scrofa ensemble gene identifiers.  259 

4. Separate the human data into two parts – the breed matching set and the background set 260 
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5. Using a Fisher Exact test, compare the number of differentially expressed genes for the 261 

exercised vs rested muscle in the background set vs the breed matching set. 262 

6.  The steps for the breed were also applied to our divergent count set for FCR.  263 

 264 

The reason edgeR was used in this part of the analysis, was because it was more flexible to fit to the 265 

publicly available data, allowing to compare our results to the other studies. As each dataset was 266 

formatted and analyzed differently, we had to process them individually. In the data set from 267 

Devarshi et al(dataset 1)(Devarshi, Jones et al. 2018), we chose to use the lean pre exercise vs lean 268 

post exercise group as our comparison, and significance was based on the reported cuffdiff analysis. 269 

For the set of Murton et al(dataset 2)(Murton, Billeter et al. 2014), we pooled all control vs exercise 270 

samples and analyzed them using Limma as the data was microarray data, using the same Limma 271 

pipeline as mentioned above in our FE analysis. As the results were weaker in Murton et al, we chose 272 

to use P <0.05 as a cutoff for the Fisher exact test. For the set from Popov et al(dataset 3)(Popov, 273 

Makhnovskii et al. 2019), we grouped all the 4h post exercise results vs all 4h control non-exercised 274 

and performed  DE analysis using edgeR with no other covariates using the same settings as our FE 275 

analysis above, with significance based on the found FDR values. 276 

Results 277 

Differential Expression analysis 278 

In figure 1 we can see the visualization of the PCA analysis of the count data. There is one main 279 

point: there is no clear pattern separating the breeds based on the first two components. Based on the 280 

lack of separation of the breeds we gain confidence in the application of a common breed analysis. 281 

Any of the lower variance components have a lower proportion of the variation explained than the 282 

two observed Principal Components, therefore we are confident that no major proportion of the 283 

variation is directly driven by breed. We do observe a significant and detectable effect of breed 284 

expression level (as seen further down), meaning there are features in our data which can separate the 285 

breeds.  286 

In figure S1 we can see the distribution of the uncorrected p-values for the Deseq2 analysis in our 287 

two breeds in relation to FCR with the corresponding figure for the common analysis in figure 288 

2(right). In total, the Landrace analysis had one gene with an FDR < 0.1, and  Duroc had 8, and we 289 
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found 4 in the common breed analysis. Overall, we only find a limited set of genes associated with 290 

FCR.  In table 1, we see the overview over the genes that where differentially expressed at the 0.1 291 

FDR level in the common and individual breed analysis from Deseq2. As in previous studies, we find 292 

genes related to mitochondria (MRPS11, MTRM1) and glucose a related gene (MGAT4A)(Ohtsubo, 293 

Takamatsu et al. 2005).  We also find genes that have been associated with meat quality phenotypes 294 

in cattle and pig (MTRF1,KLH30) (Jiang, Michal et al. 2009, Chung, Lee et al. 2015, Dos Santos 295 

Silva, Fonseca et al. 2019). Perhaps the most interesting result, is that one of the genes in the Duroc 296 

analysis, TRIM63, has been associated as a biomarker for differences in response to exercise induced 297 

muscle damage(Baumert, G-REX Consortium et al. 2018), which ties into our comparison to human 298 

data below. 299 

As the results were somewhat limited, we chose to continue with a different strategy in the joint 300 

breed analysis. Based on the results in figure 2, we see that p-values had an overall anti-conservative 301 

distribution for FE in the joint analysis, which showed us some promise for further analysis. We 302 

chose to calculate the DE using 3 methods, as we wanted to ensure that our results where robust and 303 

replicable, knowing that individual methods can vary in output (Seyednasrollah, Laiho et al. 2015). 304 

In figure 2 we can see the overview of the distribution of uncorrected p-values for FCR in all 3 305 

methods, showing an anti-conservative distribution regardless of the method. If FCR was unrelated to 306 

gene expression in general, we would expect a uniform p-value distribution in our model. We can 307 

statistically confirm the likelihood of our observed p-values under the null hypothesis of no relation 308 

between expression and FCR using a Kolmogorov-Smirnov test, and in all 3 methods we reject the 309 

null hypothesis with (p-value < 10^-16). This leads us to conclude that there is a relation between the 310 

muscle tissue expression and FCR. In table 2 we can see the overview over the significance of our 311 

covariates in the 3 methods used for DE analysis. The most significant covariate is RIN, highlighting 312 

the importance of correcting for the RIN values when analyzing samples acquired in a non-laboratory 313 

setting. It has been previously shown that while RIN values do have an impact on expression values, 314 

explicitly controlling for this in a modelling framework should appropriately correct the data in most 315 

data points(Gallego Romero, Pai et al. 2014). Furthermore, we see that many genes are differentially 316 

expressed between the breeds, which is expected, and that age has an impact on expression.  To 317 

quantify the observed link between expression and FE, we continue with two strategies – analyzing 318 

the overall pathway enrichments for the most significant genes and creating gene expression modules 319 

based on network analysis of our gene expression profiles.  320 
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Enrichments Analysis 321 

The first step in an enrichment analysis is to select a suitable set of genes. The most general strategy 322 

is to pick genes that are differentially expressed after multiple testing correction for such a set. In our 323 

analysis, we do not have enough of these for a meaningful enrichment analysis, but we are able to 324 

demonstrate an overall relation between FCR and gene expression as seen above in figure 2. In our 325 

case, we could select genes with an uncorrected p-value below 0.05, but this is somewhat arbitrary 326 

distinction(Butler and Jones 2018). Instead, we chose to make an estimation of the number of 327 

additional low p-values in comparison to the uniformly distributed p-values, which represents the 328 

null hypothesis of no overall relation between FCR and gene expression. We call this value the 329 

divergent count.  In essence, we are estimating the interval with the maximum positive divergence 330 

between our observed p-value frequencies and the same number of uniformly distributed p-values, 331 

assuming an approximately monotonely decreasing p-value distribution in our results. This has the 332 

advantage of not relying on arbitrary cutoffs but instead being a property of the overall p-value 333 

distribution.  In figure 3, we can see a schematic representation of the divergent count.  In Figure 4 334 

we can see the a Venn diagram showing the overall divergent counts and overlaps for all three 335 

methods, with the full overlap set being the final gene set for enrichment analysis. We can see that a 336 

majority of the selected genes are identified by all three methods. This gives us confidence in the 337 

robustness of the selected set. To identify enriched functional pathways in our dataset, we chose to 338 

use is GOrilla(Eden, Navon et al. 2009). In GOrilla it is possible to give a background set to base the 339 

analysis on, making it advantageous for expression data, as it allows us only to use genes actually 340 

expressed in our data as a background.   For the full output of the analysis, see supplementary table 2. 341 

Overall, 5 terms were significant post multiple corrections, with 4 out of these being related to 342 

mitochondrial ontologies In figure 5 we can see a summarized output of the significant post multiple 343 

testing correction GO-terms and groups based on the GOrilla analysis, using Revigo(Supek, Bosnjak 344 

et al. 2011). Based on this, the important overall pathway was translation elongation.  345 

Gene Interaction Analysis 346 

Many strategies can be used to take advantage of the interaction or co-expression between genes. We 347 

propose to apply modelling of pairwise gene interactions, which explicitly includes the phenotype of 348 

choice, which in our case is FE. This can be advantageous when dealing with complex phenotypes, 349 

as it may allow us to capture subtle biological variation. We chose to perform the gene interaction 350 

analysis based on the set of genes we identified from the divergent counts in our DE analysis. The 351 
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visualization of the empirical divergent counts and the bootstrapped counts can be found in 352 

supplementary figure 2.  Based on these results, the maximum bootstrapped divergent count was 83, 353 

and we observed 193 genes with a divergent count over 83. This means that many of the genes’ p-354 

value distributions are very anticonservative, and not very likely to happen by chance. There is 355 

however, the issue of data independence, as the genes’ results are not independent from each other. 356 

Due to this, and general concern of data size and weak effects we used a conservative qualitative 357 

heuristic and focused on the top 20 genes based on our methodology.  From the top 20 genes (see 358 

supplementary data 3 for the full results), the overall highlights were several transcription regulators:  359 

ETV1( an androgen receptor activate gene), LF1 (transcription factor) and  KDM4C (transcription 360 

activator and  growth related gene) (Bray and Kafatos 1991, Cai, Hsieh et al. 2007, Gregory and 361 

Cheung 2014); two mitochondrial genes,  KMO and MRPS11(Meinke, Kerr et al. 2019),; two genes 362 

related to muscular atrophy - GEMIN7 and PLPP7 (Baccon, Pellizzoni et al. 2002, Meinke, Kerr et 363 

al. 2019);  on gene implicated in heart development BIN1 (Nicot, Toussaint et al. 2007),  two lipid 364 

metabolism/obesity related genes ACOT11 and GPD1 (ADAMS, CHUI et al. 2001) (Park, Berggren 365 

et al. 2006); and finally 3 genes associated with specific traits in pig IL2RG (Immune system in 366 

pigs)(Suzuki, Iwamoto et al. 2012), GGPS1 ( meat quality) and PPARA  (weak association with fat 367 

percentage) (Szczerbal, Lin et al. 2007). Interestingly, MRPS11 was also differentially expressed. 368 

 369 

Gene Network Analysis 370 

Based on our network analysis, we identified 19 distinct modules after correcting for RIN and 371 

merging the modules based on similarity. Based on the DE analysis, we decided not to focus 372 

individually on Landrace or Duroc pigs in the network analysis, and thus the network was generated 373 

combining both breeds. Looking at the the clustering in figure 6a,, initially one might think that the 374 

network is poorly constructed, as the module dendrogram representation is not very clear. In general, 375 

we see that some modules look closely clustered based on the dendrogram, such as the red module, 376 

while other are more diffuse. We should however realize that the modules themselves are based on N 377 

x N matrix, where n is >10.000. Thus, it is not easy to represent the modules properly in lower 378 

dimensions. Therefore, we rely on the module eigenvalue trait correlation and pathway analysis of 379 

the modules to asses if they are biologically meaningful.  In figure 6b we can see the correlation 380 

between the eigenvalue of the modules and the traits and covariates we included in the DE analysis. 381 

We observe that the RIN correction of the individual genes has removed all the effect of the RIN on 382 
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the eigenvalues of our modules. Several of the modules are well correlated with the breed and age, 383 

with correlation > 0.5, while FCR is mainly correlated with two modules, red and turquoise. The red 384 

and turquoise module include 391 and 3744 genes, respectively. Based on these results we performed 385 

GO-term analysis on the red and turquoise module. The red module is more correlated to breed and 386 

age than FCR, but we know that breed and FCR are correlated, and in our data, age is correlated with 387 

FCR (0.5). It should be noted that the age and FCR correlation is caused by the higher FCR pigs in 388 

our data exhibiting lower growth rates, thus needing more time to reach the tissue sampling as the 389 

slaughter takes place at a target weight of approximately 100 kg. The turquoise module shows 390 

highest correlations in FCR. In figure 7 we see the Revigo summary of the GOrilla GO term analysis 391 

performed based on the genes in the red (a) and turquoise (b) modules. In both the red and turquoise 392 

modules, a large number of GO terms where significantly overrepresented after multiple testing 393 

correction (see supplementary data 4 and 5 for the full list for red and turquoise respectively), 394 

indicating that the modules do represent specific biological pathways. In the red module, the most 395 

significant group of terms where related to mitochondria, which were grouped into three overall 396 

groups – translation elongation, electron transport chain and hydrogen ion transmembrane transport. 397 

This mirrors our finding from the DE analysis and the gene interaction analysis. As the module has a 398 

negative correlation with FCR, it indicates a relation between higher mitochondrial activity and lower 399 

FCR, thus higher efficiency.  In the turquoise module, there was one large grouping of terms – DNA 400 

repair. This category included many GO terms, related to RNA, DNA, animo acid and nucleic acid 401 

metabolism and processing. These processes could be seen as generic growth and maintenance 402 

processes, and as the module is positively correlated with FCR, we can speculate the higher activity 403 

in DNA repair and related processes are increasing energy spend on maintenance, thus lowering 404 

efficiency. Due to the size of the module and the processes involved, it seems that the turquoise 405 

module is generically associated with overall cell maintenance and growth processes, giving it a 406 

somewhat unspecific functionality.  In supplementary data 6 we find the top 10 most connected genes 407 

in the red and turquoise module. Interestingly, in the red module 7 out of 10 genes belong to the 408 

NADH ubiquinone oxidoreductase group (NDUF), with the remaining 3 also being implicated in 409 

mitochondrial function. Thus, the mitochondrial genes are both overrepresented in the red module 410 

and the most connected within the module.  In the turquoise module, the results are unclear, as the 411 

most connected genes do not belong to any specific process, but instead cover a range of general 412 

processes that are generally important for cell function. This agrees with the general observation 413 

based on the size of the module and the overrepresented GO terms.  414 
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Human Exercise Data 415 

To test they hypothesis that improvements in efficiency could be linked to a state mimicking 416 

exercise, we compared our divergent counts genes for FCR and the genes differentially expressed 417 

between breeds with 3 different human exercise datasets [33-35]. The results can be found in table 3. 418 

We are comparing if there is a higher proportion of genes that are significant for exercise-mediated 419 

changes in our two subsets, breed and FCR related genes, in relation to the non-differentially 420 

expressed genes. We see that in all cases there is a higher proportion of significant genes in the breed 421 

and FCR set versus the background set, as the odds ratio between the subsets and the background is 422 

always below 1. In general, the breed results are more significant than the FCR genes, but they show 423 

similar ratios. This is likely because there are roughly 4 times more breed genes, yielding higher 424 

statistical power. Given the overall results, it does seem like both FCR and breed related genes are 425 

slightly more significant than background for exercise related changes.  We also did the pathway 426 

enrichment analysis for the genes that where significant in both one of our three human data sets and 427 

in the breed, and FCR set respectively. The overall results are found in figure 7a (breed) and 428 

7b(FCR). In the breed, we find that main categories are cellular metal ion homeostasis and 429 

anatomical structure development, based on 702 genes. For FCR, only 42 genes overlap with the 430 

human significant genes, meaning the results of the enrichment are not as significant, but the main 431 

overall group is regulation of transcription from RNA polymerase II promoter. 432 

Discussion 433 

There have been 4 previous studies analyzing the muscle transcriptome in an FE context (Jing, Hou 434 

et al. 2015, Vincent, Louveau et al. 2015, Gondret, Vincent et al. 2017, Horodyska, Wimmers et al. 435 

2018). The study by Gondret et al [18] was based on selecting divergent FE lines of Large White pigs 436 

for 8 generations, used 24 samples and was based on microarray. They reported a high number of 437 

differentially expressed genes in muscle between the low and high RFI groups (2417), but it is not 438 

clear from their paper how many probes were included in the statistical analysis and how this may 439 

affect multiple testing correction. They also reported that a gene was considered differentially 440 

expressed if one probe met the cutoff regardless of multiple probes did not. They reported that 441 

mitochondrial electron chain transport, glucose metabolic process and generation of precursor 442 

metabolites and energy as significant pathways for RFI. 443 
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In the study from Horodyska et al [17], they used 16 pigs, but included 8 pigs of each gender. They 444 

used an uncorrected p-value of 0.01 as their threshold,, with no consideration weather this is 445 

appropriate given their overall data distribution. They report 272 genes with p-value < 0.01, which is 446 

similar to ours of 243, however we have included less genes in our analysis (14497 vs 10563). 447 

Overall, we cannot assess their results as very significant.  448 

 In Vincent et al [20], they had 16 female Large Whites from divergent RFI lines, their study was 449 

microarray based, but they reported their results based on uncorrected p-values in both expression 450 

and proteomics.  They do however report finding mitochondrial related probes being significant.  451 

Finally, in Jing et al [19], they had a total sample size of only 6 Yorkshire pigs, based on the 452 

selection of the most extreme RFI pigs in a set of 236. They reported 645 DE genes, with 99 with 453 

FDR lower than 0.05. However, selecting such few samples at the extreme end of FE does raise the 454 

question of replication, as the large differences in RFI/FCR they achieved could easily be caused by 455 

factors that are not generally applicable. They found that the most significant pathways in their data 456 

were mitochondrial activity, glycolysis and myogenesis pathways. Despite the issues presented with 457 

the studies, it is notable that mitochondria are reported to be related to FE multiple times. 458 

In our study, we have the highest number of samples reported (41) and we include two breeds, which 459 

do not have directly divergent selection for FCR,  but with one of the breeds  more positively 460 

selected for FCR. Having this setup does present advantages and disadvantages. The advantage in 461 

relation to the other studies it that the results may generalize better across breeds. The disadvantage is 462 

that we may be fitting breed effects instead of phenotypic effects, but we do account for breed in all 463 

our analysis. The other main difference is that we have selected pigs with a range of FCR values, and 464 

fit FCR as a continuous value. In general fitting a continuous value is more informative, and the fact 465 

that we have a range of pigs that are not divergently selected, may make the results more applicable 466 

to a real life setting. In pig production there is no low FE selected line to contrast with, so the 467 

biological background of FE in a normal breeding population may be more relevant and interesting.  468 

Another general issue is how to deal with statistical issues in analysis of FE. From the various studies 469 

presented above it is clear that FE is a somewhat subtle phenotype in muscle tissue, and thus a lot of 470 

data is needed make conclusions. Here we try to tackle this issue by not being overly conservative, 471 

but still applying multiple testing correction by using and FDR of 0.1 level for individual results in 472 
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our DE analysis. Furthermore, we generally try to analyze our data by either taking the overall 473 

distribution of results and/or combing genes in groups, to avoid relying on individual weak results. 474 

Differential Expression analysis and Pathway Enrichment 475 

We have analyzed the transcriptomic differences and molecular pathways involved in differences in 476 

FCR in two different breeds.  Based on DE, we identified 14 genes with an FDR value below 0.1. 477 

The highlights here were the finding of mitochondrial genes, and TRIM64, which related to exercise 478 

induced muscle damage. 479 

Due to the limited results in the DE analysis, we chose to use a novel approach to perform a pathway 480 

enrichment analysis. In practice, we wanted to broaden the number of genes for the pathway analysis, 481 

but at the same time also select a robust and meaningful set of genes. To make the analysis more 482 

robust, we choose to base the pathway analysis on results from 3 DE expression methods. 483 

Furthermore, we elected to select genes based on the overall divergence from the null hypothesis of 484 

our p-value distribution, as this should represent a set of genes that is likely to be associated with our 485 

trait, even the genes are not significant based on individual FDR corrected p-values . To our 486 

knowledge, this is a novel way of selecting a group of genes, which we called the divergent count. 487 

Looking at the enriched pathways in our dataset selected based on the divergent counts, we find 488 

results that are common in the literature in several species beyond the pig studies already 489 

mentioned(Connor, Kahl et al. 2010, Bottje, Lassiter et al. 2017), namely differences in 490 

mitochondrial pathways related to FE, summarized as mitochondrial translation elongation in our 491 

Revigo summary.  While this is not a novel result, we did find it in a novel setting, with larger 492 

sample size, novel population selection and using a continuous value for FCR. This acts as further 493 

evidence to the link of mitochondrial activity and FE, but also as evidence that it may be relevant in 494 

real breeding populations, and not only in divergently selected test populations.  495 

Gene Expression Interaction 496 

 Our gene expression interaction analysis is a novel way of finding the most important genes, which 497 

has not been applied to FE in pigs before. Based on the qualitative analysis of the top 20 genes, the 498 

results seem promising. We found several transcription factors, including the most divergent gene 499 

(ELF1), which makes sense in regards to gene interaction. The remaining genes also seemed 500 

promising, as they included categories one can expect to be related to muscle growth and FCR, such 501 
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as lipid metabolism and muscle atrophy. Confirming previous results, we also identified two 502 

mitochondrial genes among the top 20.   503 

Gene Network Analysis 504 

Our gene network analysis revealed two modules with a correlation > 0.4 with FCR. Based on the 505 

GO term analysis enrichment of the red module, we find many enriched GO terms related to 506 

mitochondrial processes, confirming our finding in the other analysis, and from other studies. More 507 

specifically, the negative correlation between the red module eigenvalue and FCR also shows that 508 

higher mitochondrial activity is positively associated with higher efficiency. Based on the top ten hub 509 

genes in the red module we confirm this picture, as all ten genes are related to mitochondria, and 510 

seven of them are from the NDUF family, which was also found in the gene expression interaction 511 

analysis.  The turquoise module was the most correlated module(0.49), and furthermore, it was more 512 

correlated to FCR than to our other traits. Based on the GO term analysis, we found that the cluster 513 

was highly enriched for genes related to DNA repair, which included GO terms relate to RNA, DNA, 514 

animo acid and nucleic acid metabolism and processing. To the best of our knowledge, this is the 515 

first evidence of these processes being related to FE in general. The only previous link to DNA repair 516 

in livestock was a feed restriction study of cattle(Connor, Kahl et al. 2010). The top ten hub genes of 517 

this module did not show a clear picture, with the genes involved in a wide range of processes related 518 

to general cell maintenance. This indicates that the turquoise module represents general housekeeping 519 

functions, rather than very specific pathways. As the module eigenvalue was positively correlated 520 

with FCR, we can speculate that more active DNA repair and maintenance processes represent higher 521 

maintenance costs, thus reducing efficiency.  522 

 523 

Human Exercise  524 

We have established earlier that the gene expression and molecular background of FE is still 525 

somewhat elusive. To try and identify what overall mechanisms could be at play, we hypothesized 526 

that differences between our two breeds, which have different overall FE, and genes related to FCR, 527 

are more likely to be important for processes involved in exercise. The reason we had this hypothesis, 528 

is that the pigs are selected for lean growth, and it is possible that this growth stimulus is similar to 529 

the effects induced in muscle by exercise. We found a slight confirmation of this hypothesis, as we 530 

found similar favorable odds ratio for our hypothesis in all 3 datasets we tested for both FCR and our 531 
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breed genes. Our pathway enrichment analysis for FCR did not yield any very significant results, as it 532 

was only based on 42 genes. The main overall category identified, based on 4 go terms, was 533 

regulation of transcription from RNA polymerase II (pol II) promoters. Interestingly, Actin has been 534 

associated with the pre-initiation complex necessary for transcription by RNA polymerase 535 

II(Hofmann, Stojiljkovic et al. 2004), which could be relevant given the importance of actin in 536 

muscle tissue(Tang 2015). There are also links between a poll II subunit and myogenesis (CORBI, 537 

PADOVA et al. 2002). Although these results may be relevant, our data here is too weak for solid 538 

conclusions.  539 

In regards to the genes overlapping between exercise and breed differences, the results are more 540 

statistically robust, as they are based on an overall larger gene set of 702 genes. Here we find two 541 

overall groups – cellular metal ion homeostasis and anatomical structure development. For the first 542 

term, we know that the transport of ions is generically vital to muscle function (Wolitzky and 543 

Fambrough 1986, Mohr, Krustrup et al. 2007). The second overall term, anatomical structure 544 

development, is very generic in terms of function, and includes sub-categories that are related to 545 

muscle development, such as muscle structure development.  546 

Overall, the results from the Human data analysis represent a novel hypothesis, but requires more 547 

analysis and new experiments on pigs to strengthen the link between FE and exercise. One interesting 548 

aspect of this analysis is that in theory pigs could be used as a model for lean growth in sedentary 549 

conditions, which in the long run could yield interesting therapeutic possibilities applicable to 550 

humans. 551 

Conclusion 552 

We have analyzed the muscle transcriptome from Duroc and Landrace,   twp of the main purebred 553 

breeding pigs in Denmark. In contrast to previous studies, we did not use any lines divergently 554 

selected for FE, and we included a wider range of FE values, which were modelled as a continuous 555 

trait, using the highest number of pigs in a study of this type. We identified several individual genes 556 

based on DE analysis and gene-gene interaction analysis that are involved in FCR, with many of 557 

them having relevant functional backgrounds from previous studies. We applied a novel strategy to 558 

select genes for pathway enrichment, the divergent count. Based on enrichment analysis, gene-gene 559 

interaction, network analysis and DE we found several interesting candidate biomarkers genes and 560 

pathways. We reinforced the knowledge that mitochondrial activity is important FCR, but using a 561 
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non-divergently FE selected pig population. Based on the findings, we postulate that mitochondrial 562 

genes, and in particular genes from NDUF group or MRPS11 could be used as potential biomarkers 563 

for FCR in pigs. Furthermore, all our top genes from our interaction analysis also show promise as 564 

potential FCR biomarkers. Finally, we find that there is a putative link between genes involved in 565 

exercise related changes in human, and FE in pigs 566 
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Gene Name Breed FDR Regulation 

PNCK Landrace 0.0007 Down 

Patr-A Landrace 0.08 Down 

MTMR11 Duroc 0.07 Up 

C3 Duroc 0.02 Down 

LCP1 Duroc 0.02 Up 

TRIM63 Duroc 0.08 Down 

KLHL30 Duroc 0.07 Down 

NANOS1 Duroc 0.08 Up 

IGHM Duroc 0.07 Up 

ETV5 Duroc 0.02 Down 

MTFR1 Both 0.068 Down 

MGAT4A Both 0.098 Down 

SLC38A2 Both 0.098 Up 

MRPS11 Both 0.067 Up 

Table 1 – Overview of genes with a FDR value < 0.1 in all 3 differential expression analysis. There 763 

is only a limited amount of genes differentially expressed at 0.1 FDR level for FE. Notably, out of 4 764 

genes in the common breed analysis there are two genes with mitochondrial related Gene Ontologies 765 

- MRPS11, MTRM1. MTFR1 has been implicated in eating quality (measures of meat quality post 766 

cooking) in cattle(Jiang, Michal et al. 2009) and as a meat PH QTL in pig(Chung, Lee et al. 2015). 767 

Also interesting to note that TRIM63 has been suggested as a biomarker for difference in response to 768 

exercise-induced muscle damage(Baumert, G-REX Consortium et al. 2018), KLHL30 has been 769 

associated with intramuscular fat and muscle metabolism in Nelore Cattle(Dos Santos Silva, 770 

Fonseca et al. 2019). MGAT4A has been linked to diabetes and glucose transport (Ohtsubo, 771 

Takamatsu et al. 2005).   772 

Trait EdgeR Limma Deseq2 
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FCR 4 0 0 

Breed 3633 3679 3428 

RIN 5572 5763 5779 

Age 503 189 328 

 773 

Table 2 – Over view over the number of genes with FDR < 0.1 in the common breed analysis for all 3 774 

methods and each covariate. In general, we have modest amount of DE genes for FE, while our other 775 

covariates have a  amny significant genes associated with them.  776 

Data P-value Breed Odds ratio 
Breed 

P-value FCR Odds ratio 
FCR 

Dataset 1 0.0017 0.79 0,0046 0.71 

Dataset 2 0.0012 0.85 0.22 0.9 

Dataset 3 0.12 0.84 0.47 0.88 

 777 

Table 3 – Results of Fisher exact test comparing the number of  genes significant for difference in 778 
rested and exercised muscle in divergent count genes for genes found in the divergent count for FCR 779 
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and breed and the background for each of the 3 human data sets( dataset 1 (Devarshi, Jones et al. 780 
2018),dataset 2 (Murton, Billeter et al. 2014) and dataset 3 (Popov, Makhnovskii et al. 2019)). 781 

 782 

Figures 783 

784 
Figure 1 Visualization of the two first principle components in the expression data, with DD being 785 
Duroc and LL being Landrace.There is not a clear separation between breeds based on the overall 786 
expression, giving credence to a joint breed analysis of the data.  787 
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Figure 2 Visualization of the distribution of the p-values testing the relation between FCR and gene 789 
expression for all three analysis methods. It is clear in all cases that we observe an anti-conservative 790 
distribution, that is, there is an overweight of low p-values.  791 

 792 
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Figure 3 Schematic representation of the divergent counts. Here we see to theoretical p-value 793 
distributions, one which is uniform (in red) and one which is anti-conservative (blue). The purple 794 
area is where they overlap, and the blue area is the area used to estimate the divergent counts.  795 

  796 

Figure 4 Venn diagram of the overlap in the divergent counts between the three methods. We see 797 
here that the Limma is overall less conservative than the two other methods, but in general, the 798 
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methods are in high agreement with each other. The final set of genes selected for the enrichment 799 
analysis was the 853 triple overlapping set.   800 

 801 
Figure 5 Summarized representation of significant GO- for the genes set generated from the 802 
divergent count (853 total genes) overlap based from the DE analysis of FCR. The size of the boxes 803 
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is scaled according to the -log10 of the p-value.  The most significant individual terms are all in the 804 
translation, indicating a link between mitochondrial activity and FE.  805 

 806 
 807 

Figure 6 (a) Dendrogram over the module clustering. Looking at the visual clustering not all the 808 
modules look equally well defined, but it should be noted that the actual relations in given module 809 
cannot be simplified to two dimensions, as the all the relations between the genes exist in N 810 
dimentional space, where N is the number of genes. (b) Correlation between module eigenvalue and 811 
our traits, including RIN. We see here that the correlation to RIN is essentially 0 in all cases, 812 
indicating our linear correction method has worked well. Based on the top two modules (c) 813 
Summarized representation of significant GO- for genes in the red module of the WGCNA network 814 
analysis. The three largets groups are all associated with mitochondria, mirroring the results found in 815 
the differential expression analysis and the gene interaction analysis. (b) Summarized representation 816 
of significant GO- for genes in the turquoise module of the WGCNA network analysis. The main 817 
grouping here is DNA repair, which is not found in our other analysis. This may represent that 818 
increased energy expenditure on maintenance processes is reducing FE.  819 
 820 
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 821 

Figure 7 (a) Summarized representation of significant GO- for genes significantly associated with 822 
exercise in one of the three human dataset and between the breeds, based on a total of 702 genes. The 823 
size of the boxes is scaled according to the -log10 of the p-value. Here we find two overall main 824 
categories, cellular metal ion homeostasis and anatomical structure development. (b) Summarized 825 
representation of significant GO- for genes significantly associated with exercise in one of the three 826 
human dataset and in our divergent set for FCR. The size of the boxes is scaled according to the -827 
log10 of the p-value. Here the main process is regulation of transcription from RNA polymerase. 828 
Overall, the categories are not very significant here as it is only based on 42 genes.  829 
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Abstract 12 

Feed efficiency (FE) is a key trait in pig production, as it has both economic and environmental 13 

impact. FE is a challenging phenotype to study, as it is complex in nature and can be affected 14 

by many factors, such as metabolic efficiency and growth, but also activity level. Furthermore, 15 

testing for FE is a costly procedure, as it requires specific equipment and monitoring to 16 

measure. Therefore, there has been a desire to find functionally relevant genetic variants and 17 

biomarkers for FE, not only to assist with improved selection, but also to broaden and deepen 18 

our biological understanding of FE. Expression quantitative trait loci (eQTL) are genetic 19 

variants that modulates tissue-specific gene expression differences between individuals and thus 20 

the downstream gene products and eventually phenotypes. We have done a cis- and trans 21 

expressed quantitative trait loci (eQTL) analysis using both a linear and Anova model, in a 22 

population of Danbred Durocs (N=11) and Danbred Landrace (N=27). We also used 23 

bootstrapping and enrichment analysis to validate and analyze detected eQTLs. We identified 24 

15 eQTLs with FDR < 0.01, affecting several genes found in previous studies of commercial pig 25 

breeds. Example include IFI6, PRPF39, TMEM222, CSRNP1, PARK7 and MFF. The 26 

bootstrapping results showed statistically significant enrichment of eQTLs with p-value < 0.01 27 

(p-value < 2.2x0-16) in both cis and trans linear eQTLs. Based on this, enrichment analysis of 28 



top trans-eQTLs was performed, and revealed high enrichment for gene categories and gene 29 

ontologies associated with genomic context and expression regulation. This includes 30 

transcription factors (p-value=1.0x10-13), DNA-binding (GO:0003677, p-value=8.9x10-14), DNA-31 

binding transcription factor activity (GO:0003700,) nucleus gene (GO:0005634, p-value<2.2x10-32 
16), positive regulation of expression (GO:0010628), negative regulation of expression 33 

(GO:0010629, p-value<2.2x10-16). 34 

 35 

Introduction 36 

The biological background of complex traits is expressed through molecular processes triggered by 37 

a combination of genetics, epigenetics and the environment. While ample genetic markers have been 38 

identified for complex traits, the understanding of the functional effect of identified genetic markers 39 

is more challenging to identify[1]. Almost per definition, complex traits are controlled by multiple 40 

genetic factors [2-4], thus further complicating the biological background. One way of tackling this 41 

issues, is to look at direct causal links between genetics and gene expression, thus identifying a direct 42 

effect of genetic variation. This allows for a straightforward interpretation of the effect of genetic 43 

variation based on pathway and functional knowledge of related genes. This is done through the 44 

identification of expressed quantitative loci (eQTL), mapping variants to gene expression. Expression 45 

quantitative trait loci (eQTL) are genetic variants that modulates tissue-specific gene expression 46 

differences between individuals, thus the downstream gene products and eventually phenotypes. The 47 

usage of both the genetic and the transcriptomic layer combined with pathway and phenotype data 48 

can be a powerful way of identifying functionally relevant genetic variants and biomarkers for traits 49 

of interest. There are, however, several challenges with eQTL analysis. Firstly, if one wanted to map 50 

all possible SNP-gene pairs in a modern omics data set, which typically has thousands of expressed 51 

genes and at the minimum tens of thousands of SNP, the total amount of tests will be at least in the 52 

order of 108. This can pose computational challenges, but even worse, multiple testing problems. This 53 

is especially relevant as a cursory search of the Gene Expression Omnibus database 54 

(https://www.ncbi.nlm.nih.gov/geo/) for RNA-seq studies reveals most studies having less than 100 55 

samples. Therefore, it is important to have strategies for these issues when doing eQTL analysis. 56 

Example strategies used for filtering the expression data in previous studies include: filtering by 57 



estimated heritability of transcripts [5] or using only a limited set of genes[6], and there are many 58 

more possibilities.  59 

Feed efficiency (FE) has been known for decades to be an important complex trait in pig breeding. 60 

Cost of feed is the largest economic burdens in commercial pig production [7, 8], and lower feed 61 

consumption leads to more environmentally friendly production. Improving feed efficiency in 62 

livestock is also benefiting reduced greenhouse gas emissions [9]). The two main metrics for feed 63 

efficiency are residual feed intake (RFI) [10] and feed conversion rate (the ratio between feed 64 

consumed and lean growth) , with the latter being the most used in pig production. Selective breeding 65 

has improved FCR in pigs, but this has not led to direct gains in knowledge of the biological drivers 66 

of FE in pigs. Even with many studies being done on the subject, the genetic and biological 67 

background of FE in pigs is still not well understood [11]. There have been genome-wide association 68 

studies (GWAS) and systems genetic studies on RFI phenotypes in Danish pigs that is closely 69 

genetically correlated to FCR [12, 13]  These studies have revealed important candidate genes for FE 70 

via GWAS approach but has not integrated gene expression (transcriptomics) datasets to identify 71 

SNPs affecting gene expression in different porcine tissues. The cost and difficulty of measuring FE 72 

likely plays into this, in contrast to other traits, such as meat quality or litter size. One concrete 73 

example of the usage of FCR is in the Danish pig production where, FCR is improved through a 74 

centralized breeding program were potential breeding sires are tested for efficiency via accurate FCR 75 

calculations based on measured feed intake and growth.  76 

Muscle is the most important tissue in pig production in regards to production value.  Muscle plays a 77 

large role in energy metabolism and energy storage[14-16].. As such, there have been multiple studies 78 

on the muscle transcriptome in a FE context [7, 17-19]. In comparison, while there are several eQTL 79 

studies performed in pig muscle [5, 6, 20, 21], there are none based on FE traits. A connection 80 

between FE and mitochondria in muscle has been reported several times, in several species in the 81 

littearature [7, 18, 19, 22-24]. In general, it is reported that higher mitochondrial activity is related to 82 

increased FE. Given the evidence for mitochondrial effects, identifying genetic regulation of 83 

mitochondrial genes could assist in efforts to develop biomarkers for FE.  84 

Here we aimed to perform both cis and trans eQTL analysis on a previously identified set of FCR 85 

related genes and mitochondrial genes, in a pig population comprised of Duroc and Landrace 86 

purebred pigs. The two-breed analysis serves genetic variation that can aid in the detection of eQTLs, 87 

particularly as the Durocs were more heavily selected for FCR. This serves as a targeted approach for 88 



our phenotype of interest, but also aids us in reducing the input space we are analyzing in a meaningful 89 

way. Furthermore, we hypothesized that genes, which interact with genomic context and/or regulate 90 

gene expression are enriched in top trans-eQTLs. If this is true, it is a novel way of validating trans-91 

eQTLs based on functional pathway analysis. 92 

 Material and Methods 93 

Sampling and Sequencing 94 

The pigs in this study were the intersection between the pigs genotyped in [25] and Carmelo et al 95 

(submitted). All data processing steps follow those two studies, unless otherwise stated. Overall, 38 96 

male uncastrated pigs were included in this study, with 11 purbred Danbred Duroc and 27 purebred 97 

Danbred Landarace. The pigs were sent to the commercial breeding station at Bøgildgård, which is 98 

owned by the pig research Centre of the Danish Agriculture and Food Council (SEGES) at ~7kg. The 99 

pigs were regularly weighed, and feed intake was measured in a test period ranging from 40-70 days 100 

from ~28kg of weight. The period of measurement was determined by each pigs commercial viability.   101 

 Data selection and filtering 102 

 All gene annotation and analysis was done using Sus Scrofa annotation version 11.1.96 from 103 

Ensembl. 104 

Gentoype Data and Filtering 105 

The DNA isolation from collected blood and genotyping was performed by to GeneSeek (Neogen 106 

company - https://www.neogen.com/uk/). The Genotyping was based on the GGP Porcine HD array 107 

(GeneSeek, Scotland, UK), which includes 68,516 SNPs on 18 autosomes and both sex 108 

chromosomes. The SNPs were mapped to the sus scrofa genome version 11.1 using the NCBI 109 

Genome Remapping from the sus scrofa genome version 10.2. This was done using default settings. 110 

To insure that we had a sufficient representation of genotypes for each SNP, we use a MAF (minor 111 

allele threshold of 0.3. This removes SNPs that would be underpowered, or that cannot be related to 112 

expression changes as due to lack of variation. It also has the advantage of reducing the overall testing 113 

space to a more conservative set. This reduced the initial set of SNPs to 27531. The next step 114 

performed was to remove groups of SNPs in high Linkage Disequilibrium (LD). To do this, we used 115 

the LD_blocks function from the WISH-R R package[26], which was applied with an R2 of 0.9.  This 116 

grouped SNPs linearly across chromosomes into blocks based on a minimum pairwise R2  value of 117 

https://www.neogen.com/uk/


0.9 between all SNPs in a block. After this step, 19179 SNPs remained. The genotypes were coded 118 

as 0 (homozygote major), 1 (heterozygote) and 2 (homozygote minor) for the eQTL anaylsis.    119 

 120 

Expression data, Gene selection and filtering 121 

Muscle tissue samples were extracted from the psoas major muscle immediately post slaughter, and 122 

the samples were kept at -25 C  in RNA later (Ambion, Austin, Texas). The data was sequenced on 123 

the BGISEQ-500 platform using the PE100 (pair end, 100bp length) with Oligo dT library 124 

prepapration at BGI Genomics. The reads were trimmed using Trimmomatic [27] version 0.39, with 125 

the default setting for paired end reads. Data QC was performed pre- and post-trimming using FastQC 126 

v0.11.9. Mapping was done with STAR aligner[28] version 2.7.1a, with default parameters and 127 

genome and annotation 11.1 version 96. Beside default parameters, the --quantMode GeneCounts 128 

setting was used for read quantification.  Our main interest was to investigate genes that could be 129 

related to FCR. We therefore based our set of genes on the methods in Carmelo et. al (submitted). In 130 

brief, Differential Expression analysis (DEA) was performed using three different DE methods 131 

(Limma, EdgeR, Deseq2)[29-31] with FCR as the phenotypes of interest. We then calculated the 132 

divergence between our observed p-value distribution for FCR and the uniform distribution for each 133 

method, enabling us to select a list of genes that are related FCR. This was motivated by the fact that 134 

we had a large overrepresentation of low p-values in the DEA, meaning the distribution was anti-135 

conservative. This resulted in a set of 853 genes. As mitochondrial genes have been implicated in FE 136 

in muscle in both our previous study and in several studies in multiple species[7, 18, 19, 22-24], we 137 

also selected all genes with a mitochondrial gene ontology (gene ontology id GO:0005739) and 138 

included them in the analysis. All genes were filtered to have a minimum of 5 reads in at least 11 139 

samples, as 11 was the size of the Duroc group.  Testing revealed that genes with a single expression 140 

outlier could result in likely false positives. Therefore, all genes with a single gene with a Z-score 141 

above 3 were removed, corresponding to a single observation with normalized expression further than 142 

3 standard deviations from the mean.  This resulted in a final gene set of 1425 genes.  143 

eQTL Analysis 144 

Calculation of eQTLs 145 

All of the eQTL analysis was performed using R version 3.5.3. Gene expression was normalized 146 

using the calcNormFactors from the R package edgeR version 3.34.3. We performed eQTL analysis 147 



using the R package MatrixEQTL version 2.3[32]. We added the following covariates in the model: 148 

RNA integrity values (RIN), breed, batch and age (days). Given that the samples were collected in 149 

slaughterhouse setting, it was necessary to include RIN in the model, but this should not be an issue 150 

if appropriately corrected for [33]. As samples were collected on different days, it was necessary to 151 

correct for this using the batch effect.  Breed and age have an effect on expression, as seen in our 152 

previous study [Carmelo et al], and thus must be corrected for. While the samples come from a 153 

selection of 28 different breeders in Denmark, there is still some relationship between some pigs, 154 

especially if they came from the same breeder. Therefore, a kinship matrix based on 4 generations of 155 

pedigree was added as the error covariance matrix instead of using the default identity matrix.  The 156 

cis-distance was set to 106 bp. The analysis was done using both the modelANOVA (Anova) and 157 

modelLINEAR (linear) options, giving both a factor-based model and a linear model fit.  158 

Statistical Significance  159 

 After the model was fit, based on the empirical p-value distribution, pathway enrichment analysis 160 

was performed on the top putative eQTLs based on the results from the trans-eQTL linear model. The 161 

linear model was chosen over the Anova as the empirical p-value distribution for the Anova had an 162 

overweight of low p-values, which means that we should avoid using the overall distribution of p-163 

values for conclusions. In the linear version, we observed that the p-values were nearly uniform with 164 

a slight overweight of low p-values. To show the significance of this result, we performed 165 

bootstrapping by shuffling the genotype values of each SNP while maintaining the same expression 166 

values and covariates. We then calculated the number of random eQTLs with p-value < 0.01, for both 167 

the cis- and trans-eQTLs.   Assuming the shuffled values are normally distributed, we calculated the 168 

probability of observing our empirical number of p-values < 0.01. We also saved the lowest, the 10th 169 

lowest and the 100th lowest observed p-value for both trans and cis bootstrapped eQTLs for each 170 

iteration. The bootstrapping procedure was done 500 times with both Anova and the linear model.   171 

Orthonormalization 172 

To visualize the expression and genotype values on the scale used by Matrix eQTL, we scaled and 173 

centered both the design matrix of the covariates, the expression and the genotypes. After this, we 174 

used the mlr.orthogonalize function from the MatchLinReg package version 0.7.0 to orthogonilize 175 

the expression values and genotypes of each relevant gene and SNP in relation to the covariates, 176 

respectively, using normalize=True as an option. This procedure was done mimicking the method 177 

reported in the Matrix eQTL[32].  178 



QTL region and relation to FCR 179 

To verify if our eQTLs were in know quantitative trait loci (QTL) regions, we first defined a region 180 

of 100kb upstream and downstream of each SNP to overlap with. The region size was conservatively 181 

defined based on reported haplotype block sizes in commercial pigs[34]. We then checked if the SNP 182 

coordinate had any overlaps with FCR QTLs from the Pig QTL database[35]. We also did the same 183 

procedure with the target gene, except we did not extend the region beyond the gene boundaries. 184 

Pathway Analysis 185 

We hypothesized that, if trans-eQTLs are not false positives, they should be enriched for functional 186 

categories which could relevantly cause distal interactions, in comparison to a the background. 187 

Therefore, to analyze our top trans-eQTLs, we calculated the number of additional empirically 188 

observed low p-values under 0.01, by substracting the expected numer of p-values < 0.01 (𝟎. 𝟎𝟏 ×189 

𝑵) from the observed.  We then tested the enrichment of the genes in our top eQTL group for the 190 

following gene categories/ontologies: transcription factors(TF) (based on the AnimalTFDB 3.0 pig 191 

transcription factors [36]) , DNA-binding (GO:0003677), DNA-binding transcription factor activity 192 

(GO:0003700) nucleus gene (GO:0005634), positive regulation of expresison (GO:0010628), 193 

negative regulation of expression (GO:0010629) and membrane gene (GO:0016020). Each category 194 

was selected based on a biological hypothesis.  All GO terms were retrieved using biomart 2.42.0 195 

with annotation from Sus Scrofa 11.1. 96 196 

 197 

Results 198 

In figure 1 we can see the overall p-value distribution for both the linear and the Anova eQTL 199 

analysis. The linear model is overall well behaved, with uniform p-values and a small increase of low 200 

p-values. In the Anova model, the spike of high p-values may be due to issues with model assumptions 201 

in some cases, but as there large number of eQTLs it is not practical to do model diagnostics on each 202 

eQTL. This does not mean individual Anova based eQTL cannot be valid, but we should be careful 203 

with drawing results based on the overall distribution. The cis-eQTLs have a more uneven overall 204 

distribution, but likely due to the lower amount of tests. Looking at the individual results using a 205 

threshold for FDR of 0.1, the only analysis that give any significant results was the Anova analysis, 206 

yielding 14 significant trans-eQTLs and 1 cis-eQTL. It should be noted, that in our linear analysis, 207 



due to the left-skewing of the p-value distribution, all trans-eQTLs with p-value < 0.01 (N=301213) 208 

have and FDR value of 0.9 or better. This means that it is very likely that we have real trans-eQTLs, 209 

we just lack the power to identify them individually. Given this, and the results from the bootstrapping 210 

analysis (see below), we elected to show the top ten 10 eQTLs for each analysis, except the Anova 211 

trans, were we selected all with FDR < 0.1. In figure 2 we can see the visualization of the top 6 eQTLs 212 

in the linear trans model, ordered from  lowest p-value (top left) to highest (bottom right). Given the 213 

low p-values reported, the visualization, especially of the first one, does not seem to support the 214 

results. The explanation is found in the Matrix eQTL implementation deals with covariates. In Matrix 215 

eQTL, all covariates, expression and genotypes are centered and scaled, and then the expression and 216 

genotype vectors are both orthogonized in relation to the covariate matrix. Only after this step is the 217 

linear relationship between expression and genotype calculated. In figure 3, we can see the same plot 218 

in scatter plot form, based on the transformed values. Here we can see a clear linear relationship 219 

between the transformed expression values and genotype values. 220 

 Bootstrapping 221 

Bootstrapping is a useful tool when dealing with complex data, allowing us to get estimates of the 222 

likelihood of our observations without explicit probability calculations. Here, we wanted to show that 223 

our spike in low p-values in the linear analysis was statistically unlikely to happen by chance. Based 224 

on 500 bootstraps, we estimating the mean and the variance of the number of p-values < 0.01, and 225 

compared this with our observed number. Assuming normally distributed counts, which is a fair 226 

assumption given our sample size and the scale of the data, the probability of our observed value is 227 

essentially 0, which is also visualized in figure 3. In table 2 we can see the comparison of the 1st,10th 228 

and 100th p-values in our bootstrapped data with our empirical data.  Overall, the real data performs 229 

better as we go down in rank. This indicates that the real data has lower bound on significance, but 230 

overall the results are not achievable by chance.  231 

Pathway enrichment analysis 232 

As our genes were pre-selected, there is no a-priori reason to perform enrichment analysis. In 233 

particular, there is no particular meaning in finding that the cis-eQTLs are enriched for some pathway. 234 

The cis-eQTLs are simply tests of correlation between local genomic context and expression, and 235 

significance denotes identification of possible genetic expression regulatory mechanisms, not 236 

underlying pathways. In contrast, for the trans-eQTL, there are meaningful hypothesis we could state. 237 

Why would a gene have significant association to a distal genetic element? We hypothesized that 238 



genes that interact with genomic context and/or are expression regulatory would be enriched in the 239 

low p-value group in comparison to the overall genes used. This includes genes that directly interact 240 

with genomic context, such as DNA binding genes and regulatory genes, such as transcription factors 241 

and positive or negative expression regulators. To test our hypothesis, we selected the top 28147 242 

SPN-gene pairs from our linear trans eQTL analysis. This represented our observed surplus of low p-243 

values found when comparing with a uniform p-value distribution for eQTLs with a p-value < 0.01, 244 

motivated by our results in from the bootstrapping (figure 2).  Traditionally, one might test our 245 

hypothesis using a pathway enrichment tool, but given that the eQTL data had a special structure, 246 

including repeated entries of the same genes from a smaller background set, it was not suitable for 247 

typical methods. Instead, we used a more targeted approach, selecting specific categories we believed 248 

tested our hypothesis. In table 1, you can see the result for the enrichment of the top genes compared 249 

to the initial background set, using the Fisher test to derive p-values, with selected gene ontologies 250 

and categories. The results from the enrichment are quite striking, as we get very significant 251 

enrichment for DNA binding genes, transcription factors and DNA binding transcription factor 252 

activity. All these categories fit our hypothesis, as they engage directly with distal genomic context. 253 

We also tested for nucleus genes, as we expect genes that are active in the nucleus to be more likely 254 

to interact with genomic context. Furthermore, we tested for general expression regulation, with the 255 

positive and negative expression regulation categories. Intriguingly, positive regulation was slightly 256 

depleted or unchanged, while negative expression regulatory genes was the most enriched category. 257 

Finally we included membrane genes, as a control category which includes a large number of genes, 258 

as we do not believe they have a reason to be enriched, which they are not. As a control of the 259 

enrichment, we also compared with all expressed genes in our samples. This aids in the interpretation, 260 

and acts as a control, as if there was high divergence in the two comparisons the results might just be 261 

an artefact of our methodology. We see similar results comparing with all genes, and due to the large 262 

number of genes in both the expressed set and the trans-eQTLs, we get very significant p-values.  263 

Discussion 264 

In this study, we applied Matrix eQTL to a set of genes previously identified as having associations 265 

to FCR.  We have presented that top results of both cis and trans eQTLs based on both linear 266 

association and a factorial genotype mode (Anova). There have been several muscle eQTL studies in 267 

pig before [5, 6, 21, 37-41]. However, direct comparison of results is quite challenging, for several 268 

reasons. None of the other studies where applied to FCR, as the genes and SNPs selected were 269 

generally selected based on the phenotype of interest, this limits the overlap. Furthermore, due to the 270 



statistical challenges, many divergent strategies were employed, for example using a pre-GWAS[38], 271 

picking a limited set of pathway specific genes[6] or using a limited set of microsatellites[41]. Some 272 

studies also included heritability analysis [5, 21]. The studies above include both crossed, purebred 273 

and F2 half-sib pig populations. Given all these factors, and the novelty of FCR in an eQTL context, 274 

we cannot compare our study very specifically to othersm, and one should view our study as a pilot 275 

study for FCR eQTLs. Specifically, we have only a limited number of samples given the genetic 276 

context, and thus we view our individual eQTLs with caution, and they should be confirmed in larger 277 

population. We do however present novel strategies in an eQTL context, which show promising 278 

results, and could be generally applicable to other eQTL studies. 279 

We have included two pure breeds in our analysis, Duroc and Landrace, which in of itself is an 280 

unusual choice. Many studies published have inbred lines, but it has been suggested that it would be 281 

advantageous to do eQTL analysis on a natural genetically varying population [42], such as two 282 

separate breeds. For the input SNPs, we made several choices for maximizing the number of relevant 283 

SNPs to include. First, we selected a quite high cutoff of 0.3 MAF. This allows us to have high enough 284 

variation at each included SNP, given our low sample size. It has also been shown, that in chip-based 285 

data such as ours, the overall structure in the data is robust to different MAF cutoffs[43], thus this 286 

should not impart any biases into the results. Finally, we grouped SNPs in high LD (R2 >0.9) into 287 

blocks and used tagging variants to represent blocks. This allowed us to reduce the space further, 288 

removing redundant genetic information, thus relaxing our multiple testing thresholds. In regards to 289 

our cis-eQTL distance, we chose a 1Mb window, which is on the lower end for pig studies [21], 290 

however given our low samples size we wanted to keep the cis analysis as conservative as possible.  291 

In regards to individual eQTLs, one should be careful with over interpreting the results, but instead 292 

view the eQTLs as candidates for further study. Based on a qualitative analysis, we do however find 293 

several interesting genes among our top eQTL candidates.  IFI6, a gene implicated in apoptosis 294 

regulation through mitochondrial pathways[44], has been previously related to meat and carcass 295 

quality[45]. PRPF39, a pre-mRNA processing gene, has previously been related to a trans-eQTL in 296 

Durocs with divergent fatness[41]. DNAJB1, a heatshock gene, was found to be downregulated in 297 

lean pigs [46].  TMEM222,  a transmembrane protein, was found to be differentially expressed 298 

between tissues and genotypes between Korean native pigs and Yorkshires[47]. CSRNP1, the 299 

Cysteine And Serine Rich Nuclear Protein 1 gene, was found to be a metabolic response gene in 300 

relation to feed intake in Durocs. INTS7, an RNA processing gene, was associated with a SNP 301 

significant for meat quality in Chinese pigs[48]. The ACOX3 gene, a fatty acid metabolism gene, had 302 



previous cis-eQTLs identified for it[6]. The PARK7 gene, a gene that codes for a protein that protects 303 

from oxidative stress[49], does not appear in a pig related context in the literature, but it is found in 304 

a known FCR QTL region, as well as the mitochondrial fission factor (MFF). CPT1B, the arnitine 305 

palmitoyl transferase 1B gene, was differentially expressed in large whites versus an indigenous high-306 

fat breed[50].  The Potassium Calcium-Activated Channel Subfamily M Alpha 1 gene, KCNMA1, 307 

had been previously found to diverge in expression between Large White and Basque pigs[51]. 308 

Metaxin (MTX2), a mitochondrial gene, was a candidate gene for red blood cell count in a Duroc x 309 

Erhualian population based on a nearby genome wide significant SNP [52]. Synaptotagmin 12 310 

(SYT12) was found in the area with which explained the largest variance in piglets porn in 3520 311 

Durocs[53]. Myosin XIX (MYO19) was a candidate gene for eating behavior traits due to a nearby 312 

significant SNP in the same Duroc population our pigs come from[54]. The Uncharacterized Protein 313 

C7orf50 has previous cis-eQTLs idenfied in a behavioral context in humans[55]. While this might 314 

seem like a mixed group of results, he main takeaway, is that each of the genes mentioned above have 315 

appeared in previous contexts that demonstrate genetic regulation and association with traits under 316 

selection in commercial pigs, thus giving qualitative evidence that increases the likelihood of our 317 

eQTLs being true positives despite the sample size..    318 

The final and perhaps most interesting result in our analysis stems from the enrichment analysis in 319 

the linear trans-eQTL analysis. We had initially hypothesized that we would find enrichment for 320 

genes that interact with genomic context and highly interacting genes. The findings, and their 321 

significance level, show a strong overrepresentation of DNA-binding genes, DNA-binding with 322 

transcription factor activity genes and transcription factors. These results have a quite straightforward 323 

interpretation - genes that interact on a genomic level have a higher chance of having trans-eQTL 324 

activity. This can be both mediated through direct interactions, but also through indirect effects, such 325 

as transcription factor acting on each other, thus mediating their own genetic effect to other genes. 326 

The more intriguing result is the contrast between negative and positive gene regulation. Given our 327 

sample size and study power, it is difficult to assess individual genes, and thus properly grasp specific 328 

interpretation of these results. In general, given the complexity of gene expression regulation, further 329 

specific study is needed before we have a proper understanding of the contrast between negative and 330 

positive expression, and the rest of the enrichment results. Based on our analysis, we propose that 331 

these enrichments could be general effects, and thus can assist us in the validation of true trans-332 

eQTLs. Essentially, identification of such biologically relevant effects can be used as an extra layer 333 

of evidence for true positive trans-eQTLs.  334 



Conclusion 335 

In this study, using a population of purebred Durocs (N=11) and purebred Landarace (N=27) pigs 336 

and a set of previously identified FCR genes, we did a cis and trans-eQTL anaylsis based on both 337 

linear and Anova models. We identified 15 eQTLs at 0.1 FDR level, reported several more with 338 

marginal significance, which all could serve a potential FCR biomarkers.  In our linear analysis, we 339 

identified a highly statistically significant increase of p-values below 0.01, based on bootstrapping. 340 

Based on this, we performed pathway enrichment analysis on the top 28147 linear trans-eQTLs, 341 

testing the hypothesis that genes that interact with genomic context, and generally, gene expression 342 

regulators, would be enriched in top trans-eQTLs. We identified highly significant enrichment for 343 

transcription factors, DNA-binding (GO:0003677), DNA-binding transcription factor activity 344 

(GO:0003700) nucleus gene (GO:0005634), negative regulation of expression (GO:0010629) and 345 

depletion for positive regulation of expression (GO:0010628).  346 

 347 

  348 

FigureFejl! Ingen tekst med den anførte typografi i dokumentet. 1. Histograms of the p-value 349 

distribution of all cis (a,b) and trans(c,d ) eQTL pairs in the linear(a,b) and Anova(c,d) models. Based 350 

on the overall distribution, we see a slight anti-conservative trend in the linear p-values in both cis 351 

and trans eQTLs.  352 

 353 



 354 

  355 

FigureFejl! Ingen tekst med den anførte typografi i dokumentet. 2. Boxplot of the top 6 trans-eQTLs 356 

from linear analysis. Comparing with the summary from table 1, it seems unexpected that the top left 357 

boxplot is of the most significant eQTL. . Overall the 3rd and the 6th ranked eQTLs look visually more 358 

appealing. This because the genotype here are the raw values, and the expression values are only 359 

normalized normally, not taking covariates into account. 360 

 361 



 362 

FigureFejl! Ingen tekst med den anførte typografi i dokumentet. 3. Scatter-plot of the 363 

orthonormalized expression and genotype values for the top 6 trans-eQTLs in the linear analysis. The 364 

linear relationship is quite clear on the transformed values, in comparison to the boxplots of the 365 

untransformed values. 366 

 367 



 368 

 369 

FigureFejl! Ingen tekst med den anførte typografi i dokumentet. 3. Histograms of the number of p-370 

values below 0.01 in our 500 bootstrapped linear trans and cis-eQTLs analysis. The red dotted line 371 

represents the observed values., The likelihood of observing such extreme values by chance is 372 

essentially 0 in both cases, if we model the likelihood based of the normal distribution.  373 

 374 

Snp Gene P-value FDR Chr Position Analysis 

WU_10.2_7_1320670 SLC20A2 2.36e-11 0.00064 7 1132634 Anova trans 

WU_10.2_7_115152142 SLC20A2 1.21e-10 0.00096 7 108750676 Anova trans 

ASGA0040859 SLC20A2 1.35e-10 0.00096 9 3330061 Anova trans 



WU_10.2_18_2886712 SLC20A2 1.41e-10 0.00096 18 2875724 Anova trans 

ASGA0042452 IFI6 7.68e-10 0.0042 9 31552392 Anova trans 

WU_10.2_14_148897646 PRPF39 3.89e-09 0.018 14 137024504 Anova trans 

ALGA0109564 DNAJB1 1.23e-08 0.048 15 68774343 Anova trans 

ALGA0053497 TMEM222 1.40e-08 0.048 9 60196621 Anova trans 

WU_10.2_12_33709155 GCAT 2.01e-08 0.058 12 32811156 Anova trans 

ASGA0013363 DLC1 2.11e-08 0.058 3 11038140 Anova trans 

ASGA0091484 CSRNP1 2.55-08 0.059 4 118914325 Anova trans 

ALGA0009614 CSRNP1 2.58e-08 0.059 1 256190584 Anova trans 

WU_10.2_13_216907306 POGZ 3.21e-08 0.063 13 207030935 Anova trans 

ASGA0083137 DLC1 3.22e-08 0.063 9 138505307 Anova trans 

ALGA00181601 INTS7 5.61e-09 0.15 3 27307613 Linear trans 

MARC00815811 INTS7 3.25e-08 0.31 3 27346598 Linear trans 

ALGA00152292 ACOX3 3.39e-08 0.31 2 116633408 Linear trans 

ALGA00562992 PARK71 5.21e-08 0.36 10 1400269 Linear trans 

ASGA00916382 CPT1B 8.19e-08 0.38 4 626787 Linear trans 

WU_10.2_12_3964486 MFF1 8.38e-08 0.38 12 4217210 Linear trans 

ALGA01156692 PARK71 9.79e-08 0.38 10 1187360 Linear trans 

DRGA00157091 COMTD1 1.22e-07 0.42 16 2090820 Linear trans 

ALGA00879011 NSUN2 1.63e-07 0.45 15 129751572 Linear trans 

WU_10.2_7_740616 Glycine N-

phenylacetyltransferase 

1.64e-07 0.45 7 618465 Linear trans 

INRA00157081 NES 4.07e-06 0.096 4 94242001 Anova cis 

WU_10.2_15_134661069 ABCB6 1.31e-05 0.11 15 121481724 Anova cis 

WU_10.2_6_27531636 NUDT21 1.36e-05 0.11 6 30064483 Anova cis 

MARC0009689 HDHD5 3.01e-05 0.18 5 69473204 Anova cis 

WU_10.2_15_150992806 RAMP1 6.83e-05 0.32 15 136516507 Anova cis 

MARC0112128 KCNMA1 0.00010 0.41 14 79922641 Anova cis 

WU_10.2_15_91334711 MTX2 0.00022 0.55 15 81867240 Anova cis 

WU_10.2_2_4374745 SYT12 0.00022 0.55 2 5445193 Anova cis 

ALGA00198081 MEIS1 0.00026 0.55 3 76307479 Anova cis 

WU_10.2_3_18580686 STX4 0.00027 0.55 3 18010007 Anova cis 

ASGA0054417 MYO19 0.00018 0.63 12 38196853 Linear cis 

WU_10.2_X_128169493 RBMX 0.00018 0.63 X 112221790 Linear cis 



WU_10.2_12_39624033 MYO19 0.00026 0.63 12 37981199 Linear cis 

WU_10.2_3_183721 C7orf50 0.00031 0.63 3 335933 Linear cis 

ALGA01088961 CRYM 0.00035 0.63 3 24920076 Linear cis 

ALGA0061099 MRPS31 0.00035 0.63 11 16202962 Linear cis 

ALGA0061107 MRPS31 0.00035 0.63 11 16236530 Linear cis 

ASGA0030240 NSUN4 0.00042 0.63 6 165835717 Linear cis 

WU_10.2_14_153092095 ECHS1 0.00047 0.63 14 141129811 Linear cis 

WU_10.2_14_153836231 ECHS1 0.00047 0.63 14 141357898 Linear cis 

 375 

 376 

 377 

 378 

Table 1. Overview over top cis and trans eQTls in all 4 four sub-analyses. 1Genes or Snps in known 379 

FCR qtl regions.  2Snps with p-value < 0.05 for linear association with FCR    380 

Model Min P-value 10th P-value  100th P-value 

Anova Cis 0.13 0.126 0 

Anova Trans 0.044 0.062 0 

Linear Cis 0.984 0.688 0 

Linear Trans 0.148 0.024 0.018 

Table 2. Probability of observing a lower p-value the lowest, 10th lowest p-value and 100th lowest p-381 

values in our bootstrapping. In general, in relation to our random eQTLs we perform better except 382 

in the linear cis analysis, but not very significantly. It is interesting to note that by the 100th p-value 383 

all the analysis outperform random data. This indicates that we do have true, but perhaps weak 384 

effects, and that it sets an upper bound on the power we have to find individual eQTLs post FDR 385 

correction. 386 

Category N hits in 

P<0.01 

Odds Ratio P-value Odds ratio 

expressed genes 

P-value 

expressed genes 

Transcription 

Factor 

3145 2.27 1.0x10-13 1.40 <2.2x10-16 

DNA binding 3394 2.20 8.9x10-14 1.73 <2.2x10-16 



DNA-binding 

transcription 

factor activity 

2721 3.36 <2.2x10-

16 

2.36 <2.2x10-16 

Positive 

regulation of 

expresison 

346 0.67 0.07 0.67 8.9x10-6 

Negative 

regulation of 

expresison 

1887 4.34 <2.2x10-

16 

5.39 <2.2x10-16 

Nucleus gene 8811 1.33 2.4x10-6 1.18 1.8x10-12 

Membrane gene 7707 

 

1.06 0.30 1.15 1.8x10-8 

Table 3. Enrichment analysis based on the linear trans-eQTLs with p-value < 0.01, based on the 387 

Fisher exact test. The enrichment was compared with the original input set of 1425 genes, and to the 388 

set of expressed genes in our muscle samples for additional comparison.   389 
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